## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(MultiStatM) ## ----------------------------------------------------------------------------- PTA<-PartitionTypeAll(4) ## ----------------------------------------------------------------------------- PTA$S_N_r ## ----------------------------------------------------------------------------- PTA$Part.class[[2]] ## ----------------------------------------------------------------------------- PTA$Part.class[[10]] ## ----------------------------------------------------------------------------- PTA$S_r_j[[2]] ## ----------------------------------------------------------------------------- PTA$eL_r ## ----------------------------------------------------------------------------- a1<-c(1,2) a2<-c(2,3,4) a3<-c(1,3) p1<-a1%x%a2%x%a3 c(CommutatorMatr(Type="Kperm",c(3,1,2),c(2,3,2))%*%p1) a3%x%a1%x%a2 ## ----------------------------------------------------------------------------- p1[CommutatorIndx(Type="Kperm",c(3,1,2),c(2,3,2))] ## ----------------------------------------------------------------------------- a<-c(1,2) a3<-a%x%a%x%a a3 c(EliminMatr(2,3)%*%a3) c(QplicMatr(2,3)%*%EliminMatr(2,3)%*%a3) ## ----------------------------------------------------------------------------- x<-c(1,2,3) H2<-HermiteN(x,N=2,Type="Multivariate") H2[[1]] H2[[2]] ## ----------------------------------------------------------------------------- H2<-HermiteN(x,Sig2=4*diag(3),N=2,Type="Multivariate") H2[[1]] H2[[2]] ## ----------------------------------------------------------------------------- HermiteN2X(H2,N=2,Sig2=4*diag(3),Type="Multivariate")[[1]] ## ----------------------------------------------------------------------------- Covmat<-matrix(c(1,0.8,0.3,0.8,2,1,0.3,1,2),3,3) Cov_X1_X2 <- HermiteCov12(SigX12=Covmat,N=3) ## ----------------------------------------------------------------------------- mu<-list(c(1,1),c(2,1.5,1.5,2),c(4,3,3,3,3,3,3,4),c(10,7,7,6.5,7,6.5,6.5,7,7,6.5,6.5,7,6.5,7,7,10)) cum<-Mom2Cum(mu, Type="Multivariate") cum ## ----------------------------------------------------------------------------- Cum2Mom(cum,Type="Multivariate") ## ----------------------------------------------------------------------------- mu[[3]][EliminIndx(2,3)] ## ----------------------------------------------------------------------------- r.mu<-EliminMatr(2,3)%*% mu[[3]] c(r.mu) ## ----------------------------------------------------------------------------- c(QplicMatr(2,3)%*%r.mu) ## ----------------------------------------------------------------------------- r.mu[QplicIndx(2,3)] ## ----------------------------------------------------------------------------- alpha<-c(10,5,0) omega<-diag(3) MSN<-MomCumSkewNorm(r=3,omega,alpha,nMu=TRUE) round(MSN$Mu[[3]],3) round(MSN$CumX[[3]],3) ## ----------------------------------------------------------------------------- EVSKUniS(3, Type="Standard")$Kurt.U ## ----------------------------------------------------------------------------- data<-rSkewNorm(1000,omega,alpha) EsMSN<-SampleEVSK(data) ThMSN<-EVSKSkewNorm(omega,alpha) ## ----------------------------------------------------------------------------- EsMSN$estSkew[EliminIndx(3,3)] ThMSN$SkewX[EliminIndx(3,3)] ## ----------------------------------------------------------------------------- EsMSN$estSkew[UnivMomCum(3,3)] ## Get univariate skewness for X1,X2,X3 EsMSN$estKurt[UnivMomCum(3,4)] ## Get univariate kurtosis for X1,X2,X3 ## ----------------------------------------------------------------------------- SampleSkew(data,Type="Mardia") ThMSN$SkewX.tot ## ----------------------------------------------------------------------------- SampleSkew(data,Type="MRSz") as.vector(t(c(diag(3))%x%diag(3))%*%ThMSN$SkewX) ## ----------------------------------------------------------------------------- c(t(c(diag(3))%x%diag(3))%*%ThMSN$SkewX) ## Theoretical MRS skewness vector