## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.align = "center", out.width = "100%", fig.width = 9, fig.height = 7 ) ## ----------------------------------------------------------------------------- set.seed(42) library(NAIR) dir_out <- tempdir() toy_data <- simulateToyData() head(toy_data) ## ----------------------------------------------------------------------------- nrow(toy_data) ## ----------------------------------------------------------------------------- net <- buildNet(toy_data, "CloneSeq") ## ----eval = FALSE------------------------------------------------------------- # net <- buildNet(toy_data, "CloneSeq", min_seq_length = 10) ## ----eval = FALSE------------------------------------------------------------- # net <- buildNet(toy_data, "CloneSeq", drop_matches = "\\W") ## ----eval = FALSE------------------------------------------------------------- # net <- buildNet(toy_data, "CloneSeq", dist_type = "lev") ## ----eval = FALSE------------------------------------------------------------- # net <- buildNet(toy_data, "CloneSeq", dist_cutoff = 0) ## ----eval = FALSE------------------------------------------------------------- # net <- buildNet(toy_data, "CloneSeq", drop_isolated_nodes = FALSE) ## ----------------------------------------------------------------------------- net <- buildNet(toy_data, "CloneSeq", node_stats = TRUE) ## ----eval = FALSE------------------------------------------------------------- # net <- buildNet(toy_data, "CloneSeq", cluster_stats = TRUE) ## ----------------------------------------------------------------------------- net <- buildNet(toy_data, "CloneSeq", node_stats = TRUE, color_nodes_by = c("SampleID", "transitivity", "coreness"), color_scheme = c("default", "plasma-1", "mako-1"), color_title = c("", "Transitivity", "Coreness"), size_nodes_by = "degree", node_size_limits = c(0.1, 1.5), plot_title = NULL, plot_subtitle = NULL, print_plots = TRUE ) ## ----------------------------------------------------------------------------- names(net) ## ----------------------------------------------------------------------------- net$details ## ----------------------------------------------------------------------------- head(net$node_data) ## ----------------------------------------------------------------------------- names(net$plots) ## ----------------------------------------------------------------------------- class(net$plots$uniform_color) ## ----eval = FALSE------------------------------------------------------------- # library(magrittr) # For pipe operator (%>%) # toy_data %>% # filterInputData("CloneSeq", drop_matches = "\\W") %>% # buildNet("CloneSeq") %>% # addNodeStats("all") %>% # addClusterMembership("greedy", cluster_id_name = "cluster_greedy") %>% # addClusterMembership("leiden", cluster_id_name = "cluster_leiden") %>% # addClusterStats("cluster_leiden", "CloneSeq", "CloneCount") %>% # addPlots(color_nodes_by = c("cluster_leiden", "cluster_greedy"), # color_scheme = "Viridis" # ) %>% # labelClusters("cluster_leiden", cluster_id_col = "cluster_leiden") %>% # labelClusters("cluster_greedy", cluster_id_col = "cluster_greedy") %>% # saveNetwork(output_dir = tempdir(), output_name = "my_network")