## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- knitr::include_graphics("aim-output.png") ## ----------------------------------------------------------------------------- knitr::include_graphics("nc-diagram-io.png", dpi = 144) ## ----metabolic-standardize---------------------------------------------------- library(NetCoupler) std_metabolic_data <- simulated_data %>% nc_standardize(starts_with("metabolite")) ## ----metabolic-standardize-residuals, eval=FALSE------------------------------ # std_metabolic_data <- simulated_data %>% # nc_standardize(starts_with("metabolite"), # regressed_on = "age") ## ----create-network----------------------------------------------------------- # Make partial independence network from metabolite data metabolite_network <- std_metabolic_data %>% nc_estimate_network(starts_with("metabolite")) ## ----standardize-data--------------------------------------------------------- standardized_data <- simulated_data %>% nc_standardize(starts_with("metabolite")) ## ----example-use, cache=TRUE-------------------------------------------------- outcome_estimates <- standardized_data %>% nc_estimate_outcome_links( edge_tbl = as_edge_tbl(metabolite_network), outcome = "outcome_continuous", model_function = lm ) outcome_estimates exposure_estimates <- standardized_data %>% nc_estimate_exposure_links( edge_tbl = as_edge_tbl(metabolite_network), exposure = "exposure", model_function = lm ) exposure_estimates ## ----estimation-adjustment, eval=FALSE---------------------------------------- # outcome_estimates <- standardized_data %>% # nc_estimate_outcome_links( # edge_tbl = as_edge_tbl(metabolite_network), # outcome = "outcome_continuous", # model_function = lm, # adjustment_vars = "age" # ) ## ----future-parallel-processing, eval=FALSE----------------------------------- # # You'll need to have furrr installed for this to work. # library(future) # plan(multisession) # outcome_estimates <- standardized_data %>% # nc_estimate_outcome_links( # edge_tbl = as_edge_tbl(metabolite_network), # outcome = "outcome_continuous", # model_function = lm # ) # plan(sequential)