## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(OPL) ## ----------------------------------------------------------------------------- set.seed(42) train_data <- data.frame( y = rnorm(100), # Outcome x1 = rnorm(100), # Covariate x2 = rnorm(100), w = sample(0:1, 100, replace = TRUE) # Trattamento ) test_data <- data.frame( y = rnorm(100), # Outcome x1 = rnorm(100), # Covariate x2 = rnorm(100), w = sample(0:1, 100, replace = TRUE) # Trattamento ) x <- c("x1", "x2") # le covariate y <- "y" # la variabile dipendente w <- "w" # la variabile di trattamento family <- "gaussian" # Famiglia per glm ntree <- 100 # Numero di alberi per random forest mtry <- 2 # Numero di variabili da considerare in ogni split result <- make_cate(model = "glm", train_data = train_data, test_data = test_data, w = w, x = x, y = y)