## ------------------------------------------------------------------------ library(OneR) ## ------------------------------------------------------------------------ data <- optbin(iris) ## ------------------------------------------------------------------------ model <- OneR(data, verbose = TRUE) ## ------------------------------------------------------------------------ summary(model) ## ---- fig.width=7.15, fig.height=5--------------------------------------- plot(model) ## ------------------------------------------------------------------------ prediction <- predict(model, data) ## ------------------------------------------------------------------------ eval_model(prediction, data) ## ------------------------------------------------------------------------ data(breastcancer) data <- breastcancer ## ------------------------------------------------------------------------ set.seed(12) # for reproducibility random <- sample(1:nrow(data), 0.8 * nrow(data)) data_train <- optbin(data[random, ], method = "infogain") data_test <- data[-random, ] ## ------------------------------------------------------------------------ model_train <- OneR(data_train, verbose = TRUE) ## ------------------------------------------------------------------------ summary(model_train) ## ---- fig.width=7.15, fig.height=5--------------------------------------- plot(model_train) ## ------------------------------------------------------------------------ prediction <- predict(model_train, data_test) ## ------------------------------------------------------------------------ eval_model(prediction, data_test) ## ------------------------------------------------------------------------ data <- iris str(data) str(bin(data)) str(bin(data, nbins = 3)) str(bin(data, nbins = 3, labels = c("small", "medium", "large"))) ## ------------------------------------------------------------------------ set.seed(1); table(bin(rnorm(900), nbins = 3)) set.seed(1); table(bin(rnorm(900), nbins = 3, method = "content")) ## ---- fig.width=7.15, fig.height=5--------------------------------------- intervals <- paste(levels(bin(faithful$waiting, nbins = 2, method = "cluster")), collapse = " ") hist(faithful$waiting, main = paste("Intervals:", intervals)) abline(v = c(42.9, 67.5, 96.1), col = "blue") ## ------------------------------------------------------------------------ bin(c(1:10, NA), nbins = 2, na.omit = FALSE) # adds new level "NA" bin(c(1:10, NA), nbins = 2) ## ------------------------------------------------------------------------ df <- data.frame(numeric = c(1:26), alphabet = letters) str(df) str(maxlevels(df)) ## ------------------------------------------------------------------------ model <- OneR(iris) predict(model, data.frame(Petal.Width = seq(0, 3, 0.5))) ## ------------------------------------------------------------------------ predict(model, data.frame(Petal.Width = seq(0, 3, 0.5)), type = "prob") ## ---- eval=FALSE--------------------------------------------------------- # help(package = OneR)