---
title: "Mindat Data"
author: "Xiang Que"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{Mindat Data}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---

```{r setup, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
```

## Load libraries 
```{r}
#library(httr)
#library(jsonlite)
#library(OpenMindat)
#library(tidyverse)
#library(sf)
#library(mapview)
```

## Connect to the Mindat API 
```{r}
#mindat_connection("3214e7170011236535c9a6e17d4ebd69", page_size = 1500)
```

## Demo 1- Map the retieved Localities that contains As
```{r}
#mapview(localities_list_elems_inc(c("As")), xcol = "longitude", ycol = "latitude", crs = 4269, grid = FALSE)#"Dy","Li"
```


## Demo 2- Map the retieved Localities within an given country
```{r}
#mapview(localities_list_country(c("Sweden")), xcol = "longitude", ycol = "latitude", crs = 4269, grid = FALSE)
```

## Demo 3- Map the retieved Localities that contains the input description. 
```{r}
#mapview(localities_list_description("volcano"), xcol = "longitude", ycol = "latitude", crs = 4269, grid = FALSE)
```

## Demo 4- Map the retieved Localities that contains the input description. 
```{r}
#df_elements<-minerals_ima_list_ima(1)$type_localities
#df_out <- data.frame()
#for (elements in df_elements) {
#  elm_id_list <- as.list(elements)
#  for (elm in elm_id_list){
#    df_cur_locality <- localities_retrieve_id(elm)
#    df_out <- rbind(df_out,df_cur_locality)
#  }
#}
#df_out$longitude <- as.numeric(df_out$longitude)
#df_out$latitude <- as.numeric(df_out$latitude)
#mapview(df_out2, xcol = "longitude", ycol = "latitude", crs = 4269, grid = FALSE)
```

## More Examples

Please refer to: https://github.com/quexiang/OpenMindat