## ----fig.width=7, fig.height=8, fig.align='center'---------------------------- library(OutliersO3) library(ggplot2) data(Election2005) data <- Election2005[, c(6, 10, 17, 28)] O3s <- O3prep(data, method="HDo", tols=0.05, boxplotLimits=6) O3s1 <- O3plotT(O3s, caseNames=Election2005$Name) O3s1$gO3 + theme(plot.margin = unit(c(0, 2, 0, 0), "cm")) ## ----fig.width=7, fig.height=8, fig.align='center'---------------------------- O3x <- O3prep(data, method="HDo", tols=c(0.1, 0.05, 0.01), boxplotLimits=c(3, 6, 10)) O3x1 <- O3plotT(O3x) library(gridExtra) grid.arrange(O3x1$gO3, O3x1$gpcp, ncol=1) ## ----fig.width=7, fig.height=8, fig.align='center'---------------------------- O3m <- O3prep(data, method=c("HDo", "PCS")) O3m1 <- O3plotM(O3m) grid.arrange(O3m1$gO3, O3m1$gpcp, ncol=1) ## ----message=FALSE------------------------------------------------------------ O3y <- O3prep(data, method=c("HDo", "PCS", "BAC", "adjOut", "DDC", "MCD")) O3y1 <- O3plotM(O3y) cx <- data.frame(outlier_method=names(O3y1$nOut), number_of_outliers=O3y1$nOut) knitr::kable(cx, row.names=FALSE) ## ----fig.width=7, fig.height=8, fig.align='center'---------------------------- grid.arrange(O3y1$gO3, O3y1$gpcp, ncol=1)