--- title: "PKbioanalysis overview" author: "Omar Elashkar" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{PKbioanalysis overview} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} fig_width: 12 fig_height: 8 --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r} library(PKbioanalysis) ``` ## Plate generation, reusing and managing plates ```{r} plate <- generate_96() plot(plate) ``` Calibration study examples ```{r} plate <- generate_96("Calibration study") |> add_cs_curve(c(1, 3, 5, 10, 20, 50, 100, 200, 500)) |> add_DB() |> add_DB() |> add_blank() |> # CS0IS1 add_suitability(conc = 20) |> add_qcs(2, 200 ,400, qc_serial = FALSE) |> add_DB() |> add_blank(analyte = TRUE, IS = FALSE) |> # CS1IS0 add_cs_curve(c(1, 3, 5, 10, 20, 50, 100, 200, 500)) |> add_qcs(lqc_conc = 2, mqc_conc = 180 , hqc_conc = 400) plot(plate) plot(plate, color = "TYPE") ``` ```{r eval = FALSE} plate <- register_plate(plate) plot(plate) ``` ```{r eval = FALSE} plate <- generate_96() |> add_suitability(conc = 10) |> make_calibration_study( plate_std = c(1, 3, 5, 10, 20, 50, 100, 200, 500), lqc_conc = 2, mqc_conc = 40, hqc_conc = 100, n_qc = 4, qc_serial = TRUE, n_CS0IS0 = 2, n_CS1IS0 = 2, n_CS0IS1 = 2) plot(plate, color = "TYPE") plot(plate, color = "conc") ``` ```{r eval = FALSE} plate <- register_plate(plate) ``` ```{r eval = FALSE} plate_app() ``` ## Adding samples ```{r} plate <- generate_96() |> add_samples(1:20) plot(plate) ``` ### Adding samples manually or from external spreadsheet ```{r} plate <- generate_96() plate <- plate |> add_samples("sample1") |> add_samples("sample2") |> add_samples("sample3") plot(plate) ``` ### Define samples by attributes ```{r} data(Indometh) plate <- generate_96() |> add_samples(samples = Indometh$Subject, time = Indometh$time) plot(plate, color = "time") plot(plate, color = "samples") ``` ### Automated crossover ```{r} plate <- generate_96() |> # add_samples_c(c("subject1", "subject2"), time = c(0, 10, 30, 60, 120), factor = "Male") |> add_samples_c("subject1", time = c(0, 10, 30, 60, 120), factor = "Male") |> add_samples_c("subject2", time = c(0, 10, 30, 120), factor = "Female") plot(plate, color = "time") plot(plate, color = "samples") plot(plate, color = "factor") plot(plate, color = "conc") ``` #### Food Effect Example ```{r} plate <- generate_96() |> add_samples_c(1:4, time = c(0, 10, 30, 60, 120), factor = c("Fed", "Fast")) plot(plate, color = "time") plot(plate, color = "samples") plot(plate, color = "factor") plot(plate, color = "conc") ``` ## Metabolic study (Multiple plates) ```{r} plates <- make_metabolic_study( cmpd = c("NE", "DA", "5HT", "HVA", "DOPAC", "MHPG", "5HIAA", "VMA"), time_points = c(0, 5, 10, 15, 30, 45, 60, 90, 120), n_NAD = 3, n_noNAD = 2 ) ``` ```{r} length(plates) plot(plates[[1]], color = "samples", label_size = 9) plot(plates[[2]], color = "samples", label_size = 9) plot(plates[[3]], color = "samples", label_size = 9) plot(plates[[4]], color = "samples", label_size = 9) plot(plates[[5]], color = "samples", label_size = 9) plot(plates[[6]], color = "samples", label_size = 9) ``` ```{r eval = FALSE} register_plate(plates) ```