## ----cran-installation, eval = FALSE------------------------------------------ # install.packages("PLmixed") ## ----load-data---------------------------------------------------------------- library("PLmixed") head(KYPSsim) ## ----time-points-------------------------------------------------------------- unique(KYPSsim$time) ## ----create-lambda------------------------------------------------------------ kyps.lam <- rbind(c( 1, 0), c(NA, 0), c(NA, 1), c(NA, NA)) ## ----fit-kyps-model, results = "hide"----------------------------------------- kyps.model <- PLmixed(esteem ~ as.factor(time) + (0 + hs | hid) + (0 + ms | mid) + (1 | sid), data = KYPSsim, factor = list(c("ms", "hs")), load.var = "time", lambda = list(kyps.lam)) ## ----kyps-summary------------------------------------------------------------- summary(kyps.model) ## ----------------------------------------------------------------------------- library("PLmixed") head(IRTsim) ## ----------------------------------------------------------------------------- IRTsim <- IRTsim[order(IRTsim$item), ] # Order by item unique(IRTsim$item) ## ----------------------------------------------------------------------------- irt.lam = c(1, NA, NA, NA, NA) # Specify the lambda matrix ## ---- results = "hide"-------------------------------------------------------- irt.model <- PLmixed(y ~ 0 + as.factor(item) + (0 + ability | sid) + (0 + ability | school), data = IRTsim, load.var = c("item"), family = binomial, factor = list(c("ability")), lambda = list(irt.lam)) ## ----------------------------------------------------------------------------- summary(irt.model) ## ----------------------------------------------------------------------------- betas <- irt.model$'Fixed Effects'[, 1] lambdas <- irt.model$Lambda$lambda.item[, 1] (beta.difficulty <- -betas/lambdas) ## ---- message = FALSE--------------------------------------------------------- library("irtoys") ## ---- fig.width = 5, fig.height = 5------------------------------------------- item.params <- cbind(lambdas, beta.difficulty, rep(0, 5)) plot(irf(item.params), co = NA, label = TRUE)