## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- message=FALSE----------------------------------------------------------- library(PRDA) ## ---- eval=FALSE, echo = T---------------------------------------------------- # retrospective(effect_size, power, ratio_n = 1, # test_method = c("pearson", "two_sample", "welch", # "paired", "one_sample"), # alternative = c("two_sided","less","greater"), # sig_level = .05, ratio_sd = 1, B = 1e4, # tl = -Inf, tu = Inf, B_effect = 1e3, # sample_range = c(2, 1000), tol = .01, # display_message = TRUE) ## ---- example1---------------------------------------------------------------- set.seed(2020) # set seed to make results reproducible prospective(effect_size = .25, power = .60, test_method = "pearson", display_message = TRUE) ## ---- example2---------------------------------------------------------------- prospective(effect_size = .35, power = .8, test_method = "paired", ratio_n = 1, display_message = FALSE) ## ---- example3---------------------------------------------------------------- prospective(effect_size = .35, power = .80, ratio_n = .5, test_method = "two_sample", alternative = "great", sig_level = .10, display_message = FALSE) ## ---- example4---------------------------------------------------------------- prospective(effect_size = .35, power = .80, ratio_n = .5, test_method = "welch", ratio_sd = 1.5, alternative = "great", sig_level = .10, display_message = FALSE) ## ---- example5---------------------------------------------------------------- prospective(effect_size = function(n) rnorm(n, .3, .1), power = .60, test_method = "pearson", tl = .15, tu = .45, B_effect = 500, B = 500, display_message = FALSE) ## ---- data_plot--------------------------------------------------------------- da_fit <- prospective(effect_size = function(n) rnorm(n, .3, .1), power = .60, test_method = "pearson", tl = .15, tu = .45, B_effect = 500, B = 500, display_message = FALSE) str(da_fit, max.level = 1)