## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----load, echo=FALSE--------------------------------------------------------- library(PRSPGx) ## ---- out.width = "500px", echo=FALSE, fig.cap="Table 1: Overview of PRS-DIS and PRS-PGx methods."---- knitr::include_graphics("overview.jpeg") ## ----eval=TRUE, echo=TRUE, message=FALSE, warning=FALSE----------------------- ## Simulated sample example data(PRSPGx.example); attach(PRSPGx.example) ## ---- eval=TRUE, echo=TRUE---------------------------------------------------- ## Training ## Individual-level data, prepared only for PRS-PGx-Lasso Y_train <- Y[1:3000]; T_train <- Tr[1:3000]; G_train <- G[1:3000,] ## Testing ## Individual-level data Y_test <- Y[3001:4000]; T_test <- Tr[3001:4000]; G_test <- G[3001:4000,] ## ---- eval=TRUE, echo=TRUE---------------------------------------------------- ## Performance Evaluation run_eval <- function(coef_est, Y_test, T_test, G_test){ ## Prognostic score prog_score = as.vector(as.matrix(G_test)%*%coef_est$coef.G) ## Predictive score pred_score = as.vector(as.matrix(G_test)%*%coef_est$coef.TG) ## Performance evaluation fit <- summary(lm(Y_test ~ T_test + prog_score + T_test:pred_score)) ## prediction accuracy: r2 r2 = fit$adj.r.squared ## p-value of the interaction effect inter_pvalue = fit$coefficients[4,4] result <- c(r2=r2, inter_pvalue=inter_pvalue) return(result) } ## ---- eval=TRUE, echo=TRUE---------------------------------------------------- coef_est <- PRS_Dis_CT(DIS_GWAS, G_reference, pcutoff = 0.1, clumping = TRUE) ## ----------------------------------------------------------------------------- ## Performance Evaluation run_eval(coef_est, Y_test, T_test, G_test) ## ---- echo=TRUE, eval=FALSE--------------------------------------------------- # coef_est <- PRS_Dis_LDpred2(DIS_GWAS, G_reference, pcausal = 0.1, h2 = 0.4) ## ---- eval=TRUE, echo=FALSE--------------------------------------------------- githubURL <- "https://github.com/zhaiso1/PRSPGx/blob/main/coef_est_LDpred2.rda?raw=true" load(url(githubURL)) ## ----------------------------------------------------------------------------- ## Performance Evaluation run_eval(coef_est, Y_test, T_test, G_test) ## ---- eval=TRUE, echo=TRUE---------------------------------------------------- coef_est <- PRS_PGx_CT(PGx_GWAS, G_reference, pcutoff = 0.01, clumping = TRUE) ## ----------------------------------------------------------------------------- ## Performance Evaluation run_eval(coef_est, Y_test, T_test, G_test) ## ---- eval=TRUE, echo=TRUE---------------------------------------------------- ## PRS-PGx-L (method = 1) coef_est <- PRS_PGx_Lasso(Y_train, T_train, G_train, lambda = 1.1, method = 1) ## ----------------------------------------------------------------------------- ## Performance Evaluation run_eval(coef_est, Y_test, T_test, G_test) ## ---- eval=TRUE, echo=TRUE---------------------------------------------------- ## PRS-PGx-GL (method = 2) coef_est <- PRS_PGx_Lasso(Y_train, T_train, G_train, lambda = 0.5, method = 2) ## ----------------------------------------------------------------------------- ## Performance Evaluation run_eval(coef_est, Y_test, T_test, G_test) ## ---- echo=TRUE, eval=TRUE---------------------------------------------------- ## PRS-PGx-SGL (method = 3) coef_est <- PRS_PGx_Lasso(Y_train, T_train, G_train, lambda = 0.02, method = 3, alpha = 0.5) ## ----------------------------------------------------------------------------- ## Performance Evaluation run_eval(coef_est, Y_test, T_test, G_test) ## ---- out.width = "500px", echo=FALSE, fig.cap="Table 2: PRS-PGx-Bayes algorithm."---- knitr::include_graphics("algorithm.jpeg") ## ---- echo=TRUE, eval=FALSE--------------------------------------------------- # paras = c(3, 5) # coef_est <- PRS_PGx_Bayes(PGx_GWAS, G_reference, n.itr = 100, n.burnin = 50, n.gap = 5, paras = paras) ## ---- echo=FALSE, eval=TRUE--------------------------------------------------- githubURL <- "https://github.com/zhaiso1/PRSPGx/blob/main/coef_est_Bayes.rda?raw=true" load(url(githubURL)) ## ----------------------------------------------------------------------------- ## Performance Evaluation run_eval(coef_est, Y_test, T_test, G_test)