## ----initialize, include = FALSE---------------------------------------------- knitr::opts_chunk$set( warning = FALSE, message = FALSE ) library( knitr ) library( PUMP ) set.seed( 524235326 ) ## ----gen.data----------------------------------------------------------------- pp <- pump_power( "d3.1_m3rr2rr", MDES = 0.2, M = 5, rho = 0.8, MTP = "BH", nbar = 30, J = 7, K = 5, Tbar = 0.5 ) sim.data <- gen_sim_data( pp ) ## ----first.dataset------------------------------------------------------------ head( sim.data[[1]] ) ## ----single.outcome, warning=FALSE-------------------------------------------- pp.one <- update( pp, M = 1 ) sim3 <- gen_sim_data( pp.one ) head( sim3 ) ## ----sep.data----------------------------------------------------------------- sim.data.v2 <- gen_sim_data( pp, return.as.dataframe = FALSE ) names( sim.data.v2 ) ## ----model.params------------------------------------------------------------- model.params.list <- list( M = 3 # number of outcomes , J = 7 # number of schools , K = 5 # number of districts # (for two-level model, set K = 1) , nbar = 30 # number of individuals per school , rho.default = 0.5 # default rho value (optional) ################################################## impact , MDES = 0.125 # minimum detectable effect size ################################################## level 3: districts , R2.3 = 0.1 # percent of district variation # explained by district covariates , ICC.3 = 0.2 # district intraclass correlation , omega.3 = 0.1 # ratio of district effect size variability # to random effects variability ################################################## level 2: schools , R2.2 = 0.1 # percent of school variation # explained by school covariates , ICC.2 = 0.2 # school intraclass correlation , omega.2 = 0.1 # ratio of school effect size variability # to random effects variability ################################################## level 1: individuals , R2.1 = 0.1 # percent of indiv variation explained # by indiv covariates ) ## ----model.params.full, eval = FALSE------------------------------------------ # M <- 3 # rho.default <- 0.5 # default.rho.matrix <- gen_corr_matrix(M = M, rho.scalar = rho.default) # default.kappa.matrix <- matrix(0, M, M) # # model.params.list <- list( # M = 3 # number of outcomes # , J = 7 # number of schools # , K = 5 # number of districts # # (for two-level model, set K = 1) # , nbar = 30 # number of individuals per school # , S.id = NULL # N-length vector of school assignments # , D.id = NULL # N-length vector of district assignments # ################################################## grand mean outcome and impact # , Xi0 = 0 # scalar grand mean outcome under no treatment # , MDES = rep(0.125, M) # minimum detectable effect size # ################################################## level 3: districts # , R2.3 = rep(0.1, M) # percent of district variation # # explained by district covariates # , rho.V = default.rho.matrix # MxM correlation matrix of district covariates # , ICC.3 = rep(0.2, M) # district intraclass correlation # , omega.3 = rep(0.1, M) # ratio of district effect size variability # # to random effects variability # , rho.w0 = default.rho.matrix # MxM matrix of correlations for district random effects # , rho.w1 = default.rho.matrix # MxM matrix of correlations for district impacts # , kappa.w = default.kappa.matrix # MxM matrix of correlations between district # # random effects and impacts # ################################################## level 2: schools # , R2.2 = rep(0.1, M) # percent of school variation # # explained by school covariates # , rho.X = default.rho.matrix # MxM correlation matrix of school covariates # , ICC.2 = rep(0.2, M) # school intraclass correlation # , omega.2 = rep(0.1, M) # ratio of school effect size variability # # to random effects variability # , rho.u0 = default.rho.matrix # MxM matrix of correlations for school random effects # , rho.u1 = default.rho.matrix # MxM matrix of correlations for school impacts # , kappa.u = default.kappa.matrix # MxM matrix of correlations between school # # random effects and impacts # ################################################## level 1: individuals # , R2.1 = rep(0.1, M) # percent of indiv variation explained # # by indiv covariates # , rho.C = default.rho.matrix # MxM correlation matrix of individual covariates # , rho.r = default.rho.matrix # MxM matrix of correlations for individual residuals # ) ## ----gen.sim.data------------------------------------------------------------- sim.data <- gen_sim_data(d_m = 'd3.3_m3rc2rc', model.params.list, Tbar = 0.5) ## ----convert.params----------------------------------------------------------- dgp.params.list <- convert_params(model.params.list) ## ----gen.full.data------------------------------------------------------------ sim.data <- gen_base_sim_data(dgp.params.list, dgp.params = TRUE, return.as.dataframe = FALSE ) ## ----tx----------------------------------------------------------------------- d_m <- 'd3.3_m3rc2rc' sim.data$T.x <- gen_T.x( d_m = d_m, S.id = sim.data$ID$S.id, D.id = sim.data$ID$D.id, Tbar = 0.5 ) sim.data$Yobs <- gen_Yobs(sim.data, T.x = sim.data$T.x) ## ----convert.dataframe-------------------------------------------------------- sim.data <- PUMP:::makelist_samp( sim.data )