## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----eval=FALSE, echo = FALSE, message = FALSE, warning = FALSE--------------- # library(PatientLevelPrediction) # vignetteDataFolder <- "s:/temp/plpVignette" # # Load all needed data if it exists on this computer: # if (file.exists(vignetteDataFolder)) { # plpModel <- loadPlpModel(vignetteDataFolder, "model") # lrResults <- loadPlpModel(file.path(vignetteDataFolder, "results")) # } ## ----eval=FALSE--------------------------------------------------------------- # set.seed(1234) # data(simulationProfile) # sampleSize <- 12000 # plpData <- simulatePlpData( # plpDataSimulationProfile, # n = sampleSize # ) ## ----eval=FALSE--------------------------------------------------------------- # populationSettings <- createStudyPopulationSettings( # binary = TRUE, # firstExposureOnly = FALSE, # washoutPeriod = 0, # removeSubjectsWithPriorOutcome = FALSE, # priorOutcomeLookback = 99999, # requireTimeAtRisk = FALSE, # minTimeAtRisk = 0, # riskWindowStart = 0, # riskWindowEnd = 365, # verbosity = "INFO" # ) ## ----eval=FALSE--------------------------------------------------------------- # # Use LASSO logistic regression # modelSettings <- setLassoLogisticRegression() ## ----eval = FALSE------------------------------------------------------------- # splitSettings <- createDefaultSplitSetting( # testFraction = 0.2, # type = "stratified", # splitSeed = 1000 # ) # # trainFractions <- seq(0.1, 0.8, 0.1) # Create eight training set fractions ## ----eval=FALSE--------------------------------------------------------------- # learningCurve <- createLearningCurve( # plpData = plpData, # outcomeId = 2, # parallel = TRUE, # cores = 4, # modelSettings = modelSettings, # saveDirectory = file.path(tempdir(), "learningCurve"), # analysisId = "learningCurve", # populationSettings = populationSettings, # splitSettings = splitSettings, # trainFractions = trainFractions, # trainEvents = NULL, # preprocessSettings = createPreprocessSettings( # minFraction = 0.001, # normalize = TRUE # ), # executeSettings = createExecuteSettings( # runSplitData = TRUE, # runSampleData = FALSE, # runFeatureEngineering = FALSE, # runPreprocessData = TRUE, # runModelDevelopment = TRUE, # runCovariateSummary = FALSE # ) # ) ## ----eval=FALSE--------------------------------------------------------------- # plotLearningCurve( # learningCurve, # metric = "AUROC", # abscissa = "events", # plotTitle = "Learning Curve", # plotSubtitle = "AUROC performance" # ) ## ----eval=FALSE--------------------------------------------------------------- # # Show all demos in our package: # demo(package = "PatientLevelPrediction") # # # Run the learning curve # demo("LearningCurveDemo", package = "PatientLevelPrediction") ## ----tidy=TRUE,eval=TRUE------------------------------------------------------ citation("PatientLevelPrediction")