## ----setup, cache=FALSE, include=FALSE-------------------------------------------------- library(knitr) knit_theme$set("default") opts_chunk$set(cache=FALSE) opts_knit$set(root.dir=normalizePath("..")) options(width=90) # Convenience function fcom <- function(x) format(x, big.mark=",") ## ----reading-data-ms-------------------------------------------------------------------- library(PepSAVIms) # Load mass spectrometry data into memory data(mass_spec) ## ----reading-data-bioact---------------------------------------------------------------- # Load bioactivity data into memory data(bioact) ## ----bin-info, echo=FALSE--------------------------------------------------------------- # Perform mass spectrometry levels consolidation bnfo <- binMS(mass_spec = mass_spec, mtoz = "m/z", charge = "Charge", mass = "Mass", time_peak_reten = "Reten", ms_inten = NULL, time_range = c(14, 45), mass_range = c(2000, 15000), charge_range = c(2, 10), mtoz_diff = 0.05, time_diff = 60)$summ_info ## ----consolidating-data----------------------------------------------------------------- # Perform mass spectrometry levels consolidation bin_out <- binMS(mass_spec = mass_spec, mtoz = "m/z", charge = "Charge", mass = "Mass", time_peak_reten = "Reten", ms_inten = NULL, time_range = c(14, 45), mass_range = c(2000, 15000), charge_range = c(2, 10), mtoz_diff = 0.05, time_diff = 60) # Show some summary information describing the consolidation process summary(bin_out) ## ----filtering-data--------------------------------------------------------------------- # Perform mass spectrometry levels filtering filter_out <- filterMS(msObj = bin_out, region = paste0("VO_", 17:25), border = "all", bord_ratio = 0.01, min_inten = 1000, max_chg = 10) # Show summary information describing the filtering process summary(filter_out) ## ----candidate-compound-ranking--------------------------------------------------------- # Rank the candidate compounds using the ranking procedure for each of the # bioactivity datasets rank_oc <- rankEN(msObj = filter_out, bioact = bioact$oc, region_ms = paste0("VO_", 18:22), region_bio = paste0("VO_", 18:22), lambda = 0.001) rank_bc <- rankEN(msObj = filter_out, bioact = bioact$bc, region_ms = paste0("VO_", 18:22), region_bio = paste0("VO_", 18:22), lambda = 0.001) rank_pc <- rankEN(msObj = filter_out, bioact = bioact$pc, region_ms = paste0("VO_", 18:23), region_bio = paste0("VO_", 18:23), lambda = 0.001) rank_ab <- rankEN(msObj = filter_out, bioact = bioact$ab, region_ms = paste0("VO_", 17:21), region_bio = paste0("VO_", 17:21), lambda = 0.001) rank_pa <- rankEN(msObj = filter_out, bioact = bioact$pa, region_ms = paste0("VO_", 18:21), region_bio = paste0("VO_", 18:21), lambda = 0.001) rank_ec <- rankEN(msObj = filter_out, bioact = bioact$ec, region_ms = paste0("VO_", 18:25), region_bio = paste0("VO_", 18:25), lambda = 0.001) rank_fg <- rankEN(msObj = filter_out, bioact = bioact$fg, region_ms = paste0("VO_", 19:24), region_bio = paste0("VO_", 19:24), lambda = 0.001) ## ----cyO2-rankings---------------------------------------------------------------------- # Function to find the rank of cyO2 compounds find_cyO2_rank <- function(rankEN_obj) { # The m/z values for the two incarnations of cyO2 mval1 <- 1047.4897758000001886 mval2 <- 1570.2413587500000176 # Find the indices (corresponding to the ranks) of the cyO2 incarnations which((rankEN_obj$mtoz == mval1 & rankEN_obj$charge == 3) | (rankEN_obj$mtoz == mval2 & rankEN_obj$charge == 2)) } # List the ranks for cyO2 lapply(list(ab=rank_ab, bc=rank_bc, ec=rank_ec, fg=rank_fg, oc=rank_oc, pa=rank_pa, pc=rank_pc), find_cyO2_rank)