---
title: "Matched diagnostics"
output: rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{a04_MatchedDiagnostics}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---

```{r, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
```

```{r, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>", message = FALSE, warning = FALSE,
  fig.width = 7
)

library(CDMConnector)
if (Sys.getenv("EUNOMIA_DATA_FOLDER") == "") Sys.setenv("EUNOMIA_DATA_FOLDER" = tempdir())
if (!dir.exists(Sys.getenv("EUNOMIA_DATA_FOLDER"))) dir.create(Sys.getenv("EUNOMIA_DATA_FOLDER"))
if (!eunomiaIsAvailable()) downloadEunomiaData(datasetName = "synpuf-1k")
```

## Introduction
In this example we're going to again create cohorts of individuals with an ankle sprain, ankle fracture, forearm fracture, or a hip fracture using the Eunomia synthetic data. 

```{r, eval=FALSE}
library(CDMConnector)
library(CohortConstructor)
library(CodelistGenerator)
library(PatientProfiles)
library(CohortCharacteristics)
library(PhenotypeR)
library(dplyr)
library(ggplot2)

con <- DBI::dbConnect(duckdb::duckdb(), 
                      CDMConnector::eunomiaDir("synpuf-1k", "5.3"))
cdm <- CDMConnector::cdmFromCon(con = con, 
                                cdmName = "Eunomia Synpuf",
                                cdmSchema   = "main",
                                writeSchema = "main", 
                                achillesSchema = "main")

cdm$injuries <- conceptCohort(cdm = cdm,
  conceptSet = list(
    "ankle_sprain" = 81151,
    "ankle_fracture" = 4059173,
    "forearm_fracture" = 4278672,
    "hip_fracture" = 4230399
  ),
  name = "injuries")
```

## Matched diagnostics
Running the `matchedDiagnostics()` will compare the individuals in our cohorts with age and sex matched controls from the data source. This helps us to find features of our cohort that are particularly distinctive.
```{r, eval=FALSE}
matched_diag <- matchedDiagnostics(cdm$injuries)
```