## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(dplyr) library(PoDBAY) set.seed(1) ## ----------------------------------------------------------------------------- populationEmpty <- generatePopulation() populationEmpty ## ----------------------------------------------------------------------------- vaccinated <- generatePopulation() vaccinated$N <- 1000 vaccinated$mean <- 7 vaccinated$stdDev <- 2 str(vaccinated) control <- generatePopulation() control$N <- 1000 control$mean <- 5 control$stdDev <- 2 str(control) ## ----------------------------------------------------------------------------- vaccinated <- generatePopulation(N = 1000, mean = 7, stdDev = 2) str(vaccinated) control <- generatePopulation(N = 1000, mean = 5, stdDev = 2) str(control) ## ----------------------------------------------------------------------------- vaccinated <- generatePopulation() vaccinated$N <- 1000 vaccinated$mean <- 7 vaccinated$stdDev <- 2 str(vaccinated) control <- generatePopulation() control$N <- 1000 control$mean <- 5 control$stdDev <- 2 str(control) ## ---- results = "hide"-------------------------------------------------------- vaccinated$getTiters() control$getTiters() ## ----------------------------------------------------------------------------- str(vaccinated) str(control) ## ----------------------------------------------------------------------------- # Define PoD curve parameters PoDParams <- data.frame("pmax" = 0.05, "et50" = 5, "slope" = 7) # Assign PoD vaccinated$assignPoD( PoD(titer = vaccinated$titers, pmax = PoDParams$pmax, et50 = PoDParams$et50, slope = PoDParams$slope, adjustTiters = FALSE )) control$assignPoD( PoD(titer = control$titers, pmax = PoDParams$pmax, et50 = PoDParams$et50, slope = PoDParams$slope, adjustTiters = FALSE )) str(vaccinated) str(control) ## ---- eval = FALSE------------------------------------------------------------ # vaccinated$assignPoD( # rep(0.05, vaccinated$N)) # # control$assignPoD( # rep(0.1, control$N)) ## ----------------------------------------------------------------------------- CaseCount <- ClinicalTrial(vaccinated, control, CI = 0.95) str(vaccinated) str(control) ## ---- warning = FALSE--------------------------------------------------------- vaccinated$getDiseasedCount() vaccinated$getNondiseasedCount() vaccinated$getDiseasedTiters() as_tibble(vaccinated$getNondiseasedTiters()) ## ----------------------------------------------------------------------------- dataTrial <- data.frame("patno" = 1:20, "treatment" = c(rep(FALSE, 10), rep(TRUE, 10)), "titers" = as.numeric(c(rnorm(10, 5, 2), rnorm(10, 7, 2))) ) dataTrial ## ----------------------------------------------------------------------------- # vaccinated vacc <- dataTrial %>% filter(treatment) vaccinated <- generatePopulation() vaccinated$N <- nrow(vacc) vaccinated$mean <- mean(vacc$titers) vaccinated$stdDev <- sd(vacc$titers) vaccinated$titers <- vacc$titers vaccinated # control ctrl <- dataTrial %>% filter(!treatment) control <- generatePopulation() control$N <- nrow(ctrl) control$mean <- mean(ctrl$titers) control$stdDev <- sd(ctrl$titers) control$titers <- ctrl$titers control