## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(PracTools) ## ----------------------------------------------------------------------------- ceiling(nPropMoe(moe.sw=1, e=seq(0.01,0.08,0.01), alpha=0.05, pU=0.5)) ## ----------------------------------------------------------------------------- # Neyman allocation Nh <- c(215, 65, 252, 50, 149, 144) Sh <- c(26787207, 10645109, 6909676, 11085034, 9817762, 44553355) strAlloc(n.tot = 100, Nh = Nh, Sh = Sh, alloc = "neyman") # cost constrained allocation ch <- c(1400, 200, 300, 600, 450, 1000) strAlloc(Nh = Nh, Sh = Sh, cost = 100000, ch = ch, alloc = "totcost") # allocation with CV target of 0.05 strAlloc(Nh = Nh, Sh = Sh, CV0 = 0.05, ch = ch, ybarU = 11664181, alloc = "totvar") ## ----------------------------------------------------------------------------- require(PracTools) data("smho.N874") y <- smho.N874[,"EXPTOTAL"] x <- smho.N874[, "BEDS"] y <- y[x>0] x <- x[x>0] ybarU <- mean(y) (N <- length(x)) CV0 <- 0.15 # calculate V1 based on pp(x) sample pik <- x/sum(x) T <- sum(y) (V1 <- sum( pik*(y/pik - T)^2)) n <- V1 / (N*ybarU*CV0)^2 (n <- ceiling(n)) # Anticipated SE for the pps sample (cv.pps <- sqrt(V1/(N^2*n)) / ybarU) # sample size for an srs to produce the same SE ceiling(nCont(CV0 = cv.pps, S2 = var(y), ybarU = ybarU, N = N))