## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=F------------------------------------------------------------------- # install("ProSGPV") ## ----eval=F------------------------------------------------------------------- # devtools::install_github("zuoyi93/ProSGPV") ## ----------------------------------------------------------------------------- library(ProSGPV) ## ----------------------------------------------------------------------------- x <- spine[,-ncol(spine)] y <- spine[,ncol(spine)] sgpv.2s.l <- pro.sgpv(x,y,family="binomial") sgpv.2s.l ## ----------------------------------------------------------------------------- summary(sgpv.2s.l) ## ----------------------------------------------------------------------------- coef(sgpv.2s.l) ## ----------------------------------------------------------------------------- head(predict(sgpv.2s.l)) ## ----------------------------------------------------------------------------- set.seed(1) data.log <- gen.sim.data(n=80,p=100,s=4,beta.min=0.5,beta.max=1.5,family="poisson") x <- data.log[[1]] y <- data.log[[2]] (true.index <- data.log[[3]]) (true.beta <- data.log[[4]]) sgpv.2s.p <- pro.sgpv(x,y,family="poisson") sgpv.2s.p ## ----------------------------------------------------------------------------- summary(sgpv.2s.p) ## ----------------------------------------------------------------------------- coef(sgpv.2s.p) ## ----------------------------------------------------------------------------- head(predict(sgpv.2s.p)) ## ----------------------------------------------------------------------------- set.seed(1) data.log <- gen.sim.data(n=10,p=100,s=4,beta.min=0.5,beta.max=1.5,family="poisson") x.new <- data.log[[1]] y.new <- data.log[[2]] data.frame(Observed=y.new,Predicted=predict(sgpv.2s.p,newdata=x.new)) ## ----eval=F------------------------------------------------------------------- # plot(sgpv.2s.p,lambda.max = 0.5) ## ----eval=F------------------------------------------------------------------- # plot(sgpv.2s.p,lambda.max = 0.5,lpv=1) ## ----------------------------------------------------------------------------- set.seed(1) data.cox <- gen.sim.data(n=100, p=20, s=4, family="cox", beta.min=0.5, beta.max=1.5, sig=2) x <- data.cox[[1]] y <- data.cox[[2]] (true.index <- data.cox[[3]]) true.beta <- data.cox[[4]] sgpv.2s.c <- pro.sgpv(x,y,stage=2,family="cox") sgpv.2s.c ## ----------------------------------------------------------------------------- sgpv.1s.c <- pro.sgpv(x,y,stage=1,family="cox") sgpv.1s.c ## ----eval=F------------------------------------------------------------------- # plot(sgpv.1s.c)