## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=F------------------------------------------------------------------- # install("ProSGPV") ## ----eval=F------------------------------------------------------------------- # devtools::install_github("zuoyi93/ProSGPV") ## ----------------------------------------------------------------------------- library(ProSGPV) ## ----------------------------------------------------------------------------- x <- t.housing[, -ncol(t.housing)] y <- t.housing$V9 sgpv.2s <- pro.sgpv(x,y) sgpv.2s ## ----------------------------------------------------------------------------- summary(sgpv.2s) ## ----------------------------------------------------------------------------- coef(sgpv.2s) ## ----------------------------------------------------------------------------- head(predict(sgpv.2s)) ## ----eval=F------------------------------------------------------------------- # plot(sgpv.2s,lambda.max = 0.005) ## ---- eval=F------------------------------------------------------------------ # plot(sgpv.2s, lambda.max=0.005, lpv=1) ## ----------------------------------------------------------------------------- sgpv.1s <- pro.sgpv(x,y,stage=1) sgpv.1s ## ----eval=F------------------------------------------------------------------- # plot(sgpv.1s) ## ----------------------------------------------------------------------------- set.seed(30) data.linear <- gen.sim.data(n=100, p=200, s=4) # explanatory variables x <- data.linear[[1]] # outcome y <- data.linear[[2]] # true support (true.index <- data.linear[[3]]) # true coefficients true.beta <- data.linear[[4]] ## ----------------------------------------------------------------------------- h.sgpv <- pro.sgpv(x,y) h.sgpv ## ----eval=F------------------------------------------------------------------- # png("vignettes/assets/linear.fig.4.png", units="in", width=7, height=7, res=300) # plot(h.sgpv) # dev.off()