## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.width = 7,
  fig.height = (4/6)*7
)

## ----setup--------------------------------------------------------------------
library(QAEnsemble)

## ----eval=TRUE----------------------------------------------------------------
library(svMisc)
library(coda)

## ----eval=TRUE----------------------------------------------------------------
set.seed(10)

## ----eval=TRUE----------------------------------------------------------------

a_shape = 20
sigma_scale = 900

num_ran_samples = 50

data_weibull = matrix(NA, nrow = 1, ncol = num_ran_samples)

data_weibull = rweibull(num_ran_samples, shape = a_shape, scale = sigma_scale)

plot(c(1:num_ran_samples), data_weibull, xlab="random samples", ylab="y")

## ----eval=TRUE----------------------------------------------------------------

logp <- function(param)
{
  a_shape_use = param[1]
  sigma_scale_use = param[2]

  logp_val = dunif(a_shape_use, min = 1e-2, max = 1e2, log = TRUE) + dunif(sigma_scale_use, min = 1, max = 1e4, log = TRUE)

  return(logp_val)
}

logl <- function(param)
{
  a_shape_use = param[1]
  sigma_scale_use = param[2]

  logl_val = sum(dweibull(data_weibull, shape = a_shape_use, scale = sigma_scale_use, log = TRUE))

  return(logl_val)
}

logfuns = list(logp = logp, logl = logl)

## ----eval=TRUE----------------------------------------------------------------
num_par = 2

num_chains = 2*num_par

theta0 = matrix(0, nrow = num_par, ncol = num_chains)

temp_val = 0
j = 0

while(j < num_chains)
{
  initial = c(runif(1, 1e-2, 1e2), runif(1, 1, 1e4))
  temp_val = logl(initial) + logp(initial)

  while(is.na(temp_val) || is.infinite(temp_val))
  {
    initial = c(runif(1, 1e-2, 1e2), runif(1, 1, 1e4))
    temp_val = logl(initial) + logp(initial)
  }
  
  j = j + 1

  message(paste('j:', j))

  theta0[1,j] = initial[1]
  theta0[2,j] = initial[2]

}

## ----eval=TRUE----------------------------------------------------------------
num_chain_iterations = 1e5
thin_val_par = 10

floor(num_chain_iterations/thin_val_par)*num_chains

## ----eval=TRUE----------------------------------------------------------------

Weibull_Quad_result = ensemblealg(theta0, logfuns, T_iter = num_chain_iterations, Thin_val = thin_val_par, ShowProgress = TRUE, ReturnCODA = TRUE)


## ----eval=TRUE----------------------------------------------------------------
my_samples = Weibull_Quad_result$theta_sample
my_log_prior = Weibull_Quad_result$log_prior_sample
my_log_like = Weibull_Quad_result$log_like_sample
my_mcmc_list_coda = Weibull_Quad_result$mcmc_list_coda

## ----eval=TRUE----------------------------------------------------------------
varnames(my_mcmc_list_coda) = c("a_shape", "sigma_scale")

plot(my_mcmc_list_coda)

## ----eval=TRUE----------------------------------------------------------------
my_samples_burn_in = my_samples[,,-c(1:floor((num_chain_iterations/thin_val_par)*0.25))]

my_log_prior_burn_in = my_log_prior[,-c(1:floor((num_chain_iterations/thin_val_par)*0.25))]

my_log_like_burn_in = my_log_like[,-c(1:floor((num_chain_iterations/thin_val_par)*0.25))]


## ----eval=TRUE----------------------------------------------------------------
diagnostic_result = psrfdiagnostic(my_samples_burn_in, 0.05)

diagnostic_result$p_s_r_f_vec


## ----eval=TRUE----------------------------------------------------------------
log_un_post_vec = as.vector(my_log_prior_burn_in + my_log_like_burn_in)

k1 = as.vector(my_samples_burn_in[1,,])

k2 = as.vector(my_samples_burn_in[2,,])

## ----eval=TRUE----------------------------------------------------------------
#a_shape posterior median and 95% credible interval
median(k1)
hpdparameter(k1, 0.05)
#(The 95% CI is narrower than the prior distribution and it contains the true 
#value of a_shape, 20)

#sigma_scale posterior median and 95% credible interval
median(k2)
hpdparameter(k2, 0.05)
#(The 95% CI is narrower than the prior distribution and it contains the true 
#value of sigma_scale, 900)

#a_shape and sigma_scale maximum posterior
k1[which.max(log_un_post_vec)]

k2[which.max(log_un_post_vec)]

## ----eval=TRUE----------------------------------------------------------------
plot(k1, exp(log_un_post_vec), xlab="a_shape", ylab="unnormalized posterior density")

## ----eval=TRUE----------------------------------------------------------------
plot(k2, exp(log_un_post_vec), xlab="sigma_scale", ylab="unnormalized posterior density")

## ----eval=TRUE----------------------------------------------------------------
num_samples = 10000

w_predict = matrix(NA, nrow = num_samples, ncol = length(data_weibull))

discrepancy_w = matrix(NA, nrow = num_samples, ncol = 1)
discrepancy_w_pred = matrix(NA, nrow = num_samples, ncol = 1)
ind_pred_exceeds_w = matrix(NA, nrow = num_samples, ncol = 1)

for (i in (length(log_un_post_vec) - num_samples + 1):length(log_un_post_vec))
{
  l = i - (length(log_un_post_vec) - num_samples)

    w_predict[l,] = rweibull(length(data_weibull), shape = k1[i], scale = k2[i])

    my_w_mean = k2[i]*gamma(1 + (1/k1[i]))

    discrepancy_w[l,1] = sum((data_weibull - rep(my_w_mean, length(data_weibull)))^2)

    discrepancy_w_pred[l,1] = sum((w_predict[l,] - rep(my_w_mean, length(data_weibull)))^2)

    if(discrepancy_w_pred[l,1] > discrepancy_w[l,1])
    {
      ind_pred_exceeds_w[l,1] = 1
    }
    else
    {
      ind_pred_exceeds_w[l,1] = 0
    }

  svMisc::progress(l,num_samples,progress.bar = TRUE,init = (l == 1))
}


## ----eval=TRUE----------------------------------------------------------------
Bayes_p_value = sum(ind_pred_exceeds_w)/length(ind_pred_exceeds_w)

Bayes_p_value

## ----eval=TRUE----------------------------------------------------------------
w_predict_lower = matrix(NA, nrow = 1, ncol = length(data_weibull))
w_predict_upper = matrix(NA, nrow = 1, ncol = length(data_weibull))

for(j in 1:length(data_weibull))
{
  w_predict_lower[j] = quantile(w_predict[,j], probs = 0.025)
  w_predict_upper[j] = quantile(w_predict[,j], probs = 0.975)
}

## ----eval=TRUE----------------------------------------------------------------
plot(c(1:num_ran_samples), data_weibull, main="Weibull dist. (a = 20, sigma = 900) Example",
     xlab="random samples", ylab="y", type = "p", lty = 0, ylim = c(600, 1000))
lines(c(1:num_ran_samples), colMeans(w_predict), type = "l", lty = 1, col = "blue")
lines(c(1:num_ran_samples), w_predict_lower, type = "l", lty = 2, col = "blue")
lines(c(1:num_ran_samples), w_predict_upper, type = "l", lty = 2, col = "blue")

legend("bottomleft", legend = c("Data", "Posterior predictive mean", "95% prediction interval"), lty=c(0,1,2), col = c("black", "blue", "blue"), pch=c(1,NA,NA))