## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.dpi=96 ) ## ----include=TRUE------------------------------------------------------------- ### Import RAINBOWR require(RAINBOWR) ### Load example datasets data("Rice_Zhao_etal") Rice_geno_score <- Rice_Zhao_etal$genoScore Rice_geno_map <- Rice_Zhao_etal$genoMap Rice_pheno <- Rice_Zhao_etal$pheno Rice_haplo_block <- Rice_Zhao_etal$haploBlock ### View each dataset See(Rice_geno_score) See(Rice_geno_map) See(Rice_pheno) See(Rice_haplo_block) ## ----include=TRUE------------------------------------------------------------- ### Select one trait for example trait.name <- "Flowering.time.at.Arkansas" y <- Rice_pheno[, trait.name, drop = FALSE] ## ----include=TRUE------------------------------------------------------------- ### Remove SNPs whose MAF <= 0.05 x.0 <- t(Rice_geno_score) MAF.cut.res <- MAF.cut(x.0 = x.0, map.0 = Rice_geno_map) x <- MAF.cut.res$x map <- MAF.cut.res$map ## ----include=TRUE------------------------------------------------------------- ### Estimate genomic relationship matrix (GRM) K.A <- calcGRM(genoMat = x) ## ----include=TRUE------------------------------------------------------------- ### Modify data modify.data.res <- modify.data(pheno.mat = y, geno.mat = x, map = map, return.ZETA = TRUE, return.GWAS.format = TRUE) pheno.GWAS <- modify.data.res$pheno.GWAS geno.GWAS <- modify.data.res$geno.GWAS ZETA <- modify.data.res$ZETA ### View each data for RAINBOWR See(pheno.GWAS) See(geno.GWAS) str(ZETA) ## ----include=TRUE------------------------------------------------------------- ### Perform single-SNP GWAS normal.res <- RGWAS.normal(pheno = pheno.GWAS, geno = geno.GWAS, plot.qq = FALSE, plot.Manhattan = FALSE, ZETA = ZETA, n.PC = 4, P3D = TRUE, skip.check = TRUE, count = FALSE) See(normal.res$D) ### Column 4 contains -log10(p) values for markers ## ----echo=FALSE--------------------------------------------------------------- qq(normal.res$D[, 4]) manhattan(normal.res$D) ### Automatically draw Q-Q plot and Manhattan if you set plot.qq = TRUE and plot.Manhattan = TRUE. ## ----include=TRUE, message=FALSE---------------------------------------------- ### Perform SNP-set GWAS (by regarding 11 SNPs as one SNP-set, first 300 SNPs) SNP_set.res <- RGWAS.multisnp(pheno = pheno.GWAS, geno = geno.GWAS[1:300, ], ZETA = ZETA, plot.qq = FALSE, plot.Manhattan = FALSE, count = FALSE, n.PC = 4, test.method = "LR", kernel.method = "linear", gene.set = NULL, skip.check = TRUE, test.effect = "additive", window.size.half = 5, window.slide = 11) See(SNP_set.res$D) ### Column 4 contains -log10(p) values for markers ## ----echo=FALSE--------------------------------------------------------------- qq(SNP_set.res$D[, 4]) manhattan(SNP_set.res$D) ### Automatically draw Q-Q plot and Manhattan if you set plot.qq = TRUE and plot.Manhattan = TRUE. ## ----include=TRUE, message=FALSE---------------------------------------------- ### Perform haplotype-block based GWAS (by using hapltype blocks estimated by PLINK, first 400 SNPs) haplo_block.res <- RGWAS.multisnp(pheno = pheno.GWAS, geno = geno.GWAS[1:400, ], ZETA = ZETA, plot.qq = FALSE, plot.Manhattan = FALSE, count = FALSE, n.PC = 4, test.method = "LR", kernel.method = "linear", gene.set = Rice_haplo_block, skip.check = TRUE, test.effect = "additive") See(haplo_block.res$D) ### Column 4 contains -log10(p) values for markers ## ----echo=FALSE--------------------------------------------------------------- qq(haplo_block.res$D[, 4]) manhattan(haplo_block.res$D) ### Automatically draw Q-Q plot and Manhattan if you set plot.qq = TRUE and plot.Manhattan = TRUE.