## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----setup--------------------------------------------------------------------
library(RCTrep)

## ----eval=FALSE---------------------------------------------------------------
#  source.data <- RCTrep::source.data
#  target.data <- RCTrep::target.data
#  output <- RCTREP(TEstimator = "G_computation", SEstimator = "Exact",
#                   outcome_method = "BART",
#                   source.data = RCTrep::source.data,
#                   target.data = RCTrep::target.data,
#                   vars_name = list(outcome_predictors =
#                                      c("x1","x2","x3","x4","x5","x6"),
#                                    treatment_name = c('z'),
#                                    outcome_name = c('y')),
#                   selection_predictors = c("x2","x6"),
#                   stratification = c("x1","x3","x4","x5"),
#                   stratification_joint = TRUE)
#  
#  fusion <- Fusion$new(output$target.obj,
#                       output$source.obj,
#                       output$source.rep.obj)
#  
#  fusion$plot()

## ----eval=FALSE---------------------------------------------------------------
#  source.data <- RCTrep::source.data
#  target.data <- RCTrep::target.data
#  
#  vars_name <- list(outcome_predictors =
#                      c("x1","x2","x3","x4","x5","x6"),
#                    treatment_name = c('z'),
#                    outcome_name = c('y')
#  )

## ----eval=FALSE---------------------------------------------------------------
#  source.obj <- TEstimator_wrapper(
#    Estimator = "G_computation",
#    data = source.data,
#    name = "RWD",
#    vars_name = vars_name,
#    outcome_method = "glm",
#    outcome_formula = y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
#    data.public = TRUE
#  )
#  
#  target.obj <- TEstimator_wrapper(
#    Estimator = "Crude",
#    data = target.data,
#    name = "RCT",
#    vars_name = vars_name,
#    data.public = TRUE,
#    isTrial = TRUE
#  )

## ----eval=FALSE---------------------------------------------------------------
#  source.obj.rep <- SEstimator_wrapper(Estimator = "Exact",
#                                       target.obj = target.obj,
#                                       source.obj = source.obj,
#                                       selection_predictors = c("x2","x6"))
#  source.obj.rep$EstimateRep(stratification = c("x1","x3","x4","x5"))

## ----eval=FALSE---------------------------------------------------------------
#  source.obj$diagnosis_t_overlap()
#  source.obj$diagnosis_t_ignorability()
#  source.obj.rep$diagnosis_s_overlap()
#  source.obj.rep$diagnosis_s_ignorability()

## ----eval=FALSE---------------------------------------------------------------
#  fusion <- Fusion$new(target.obj,
#                       source.obj,
#                       source.obj.rep)
#  fusion$evaluate()
#  fusion$plot()

## ----eval=FALSE---------------------------------------------------------------
#  call_dashboard(source.obj = source.obj,
#                 target.obj = target.obj,
#                 source.obj.rep = source.obj.rep)

## ----eval=FALSE---------------------------------------------------------------
#  source.data <- RCTrep::source.data
#  target.data <- RCTrep::target.data
#  
#  vars_name <- list(outcome_predictors = c("x1","x2","x3","x4","x5","x6"),
#                    treatment_name = c('z'),
#                    outcome_name = c('y')
#  )
#  
#  source.obj.gc <- TEstimator_wrapper(
#    Estimator = "G_computation",
#    data = source.data,
#    name = "RWD",
#    vars_name = vars_name,
#    outcome_method = "glm",
#    outcome_formula = y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
#    data.public = TRUE
#  )
#  
#  source.obj.ipw <- TEstimator_wrapper(
#    Estimator = "IPW",
#    data = source.data,
#    name = "RWD",
#    vars_name = vars_name,
#    treatment_method = "glm",
#    treatment_formula = z ~ x1 + x2 + x3 + x4 + x5 + x6 + x1:x2 + x3:x4,
#    data.public = TRUE
#  )
#  
#  source.obj.dr <- TEstimator_wrapper(
#    Estimator = "DR",
#    data = source.data,
#    name = "RWD",
#    vars_name = vars_name,
#    outcome_method = "glm",
#    outcome_formula = y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
#    treatment_method = "glm",
#    treatment_formula = z ~ x1 + x2 + x3 + x4 + x5 + x6 + x1:x2 + x3:x4,
#    data.public = TRUE
#  )
#  
#  target.obj <- TEstimator_wrapper(
#    Estimator = "Crude",
#    data = target.data,
#    name = "RCT",
#    vars_name = vars_name,
#    data.public = TRUE,
#    isTrial = TRUE
#  )
#  
#  strata <- c("x1","x4")
#  selection_predictors <- c("x2","x6")
#  
#  source.gc.exact <- SEstimator_wrapper(Estimator = "Exact",
#                                        target.obj = target.obj,
#                                        source.obj = source.obj.gc,
#                                        selection_predictors =
#                                          selection_predictors)
#  source.gc.exact$EstimateRep(stratification = strata,
#                              stratification_joint = TRUE)
#  
#  source.gc.isw <- SEstimator_wrapper(Estimator = "ISW",
#                                      target.obj = target.obj,
#                                      source.obj = source.obj.gc,
#                                      selection_predictors =
#                                        selection_predictors,
#                                      method = "glm")
#  source.gc.isw$EstimateRep(stratification = strata,
#                            stratification_joint = TRUE)
#  
#  source.gc.subclass <- SEstimator_wrapper(Estimator = "Subclass",
#                                           target.obj = target.obj,
#                                           source.obj = source.obj.gc,
#                                           selection_predictors =
#                                             selection_predictors)
#  source.gc.subclass$EstimateRep(stratification = strata,
#                                 stratification_joint = TRUE)
#  
#  source.ipw.exact <- SEstimator_wrapper(Estimator = "Exact",
#                                         target.obj = target.obj,
#                                         source.obj = source.obj.ipw,
#                                         selection_predictors =
#                                           selection_predictors)
#  source.ipw.exact$EstimateRep(stratification = strata,
#                               stratification_joint = TRUE)
#  
#  source.ipw.isw <- SEstimator_wrapper(Estimator = "ISW",
#                                       target.obj = target.obj,
#                                       source.obj = source.obj.ipw,
#                                       selection_predictors =
#                                         selection_predictors,
#                                       method = "glm")
#  source.ipw.isw$EstimateRep(stratification = strata,
#                             stratification_joint = TRUE)
#  
#  source.ipw.subclass <- SEstimator_wrapper(Estimator = "Subclass",
#                                            target.obj = target.obj,
#                                            source.obj = source.obj.ipw,
#                                            selection_predictors =
#                                              selection_predictors)
#  source.ipw.subclass$EstimateRep(stratification = strata,
#                                  stratification_joint = TRUE)
#  
#  source.dr.exact <- SEstimator_wrapper(Estimator = "Exact",
#                                        target.obj = target.obj,
#                                        source.obj = source.obj.dr,
#                                        selection_predictors =
#                                          selection_predictors)
#  source.dr.exact$EstimateRep(stratification = strata,
#                              stratification_joint = TRUE)
#  
#  source.dr.isw <- SEstimator_wrapper(Estimator = "ISW",
#                                      target.obj = target.obj,
#                                      source.obj = source.obj.dr,
#                                      selection_predictors =
#                                        selection_predictors,
#                                      method = "glm")
#  source.dr.isw$EstimateRep(stratification = strata,
#                            stratification_joint = TRUE)
#  
#  source.dr.subclass <- SEstimator_wrapper(Estimator = "Subclass",
#                                           target.obj = target.obj,
#                                           source.obj = source.obj.dr,
#                                           selection_predictors =
#                                             selection_predictors)
#  source.dr.subclass$EstimateRep(stratification = strata,
#                                 stratification_joint = TRUE)
#  
#  fusion <- Fusion$new(target.obj,
#                       source.gc.exact,
#                       source.gc.isw,
#                       source.gc.subclass,
#                       source.ipw.exact,
#                       source.ipw.isw,
#                       source.ipw.subclass,
#                       source.dr.exact,
#                       source.dr.isw,
#                       source.dr.subclass)
#  
#  fusion$plot()
#  fusion$evaluate()

## ----eval=FALSE---------------------------------------------------------------
#  source.data <- RCTrep::source.data
#  target.data <- RCTrep::target.data
#  
#  # Identification
#  vars_name <- list(outcome_predictors = c("x1","x2","x3","x4","x5","x6"),
#                    treatment_name = c('z'),
#                    outcome_name = c('y')
#  )
#  selection_predictors <- c("x2","x6")
#  
#  # Estimate conditional average treatment effect
#  source.obj <- TEstimator_wrapper(
#    Estimator = "G_computation",
#    data = source.data,
#    vars_name = vars_name,
#    outcome_method = "glm",
#    outcome_form=y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
#    name = "RWD",
#    data.public = FALSE
#  )
#  
#  target.obj <- TEstimator_wrapper(
#    Estimator = "Crude",
#    data = target.data,
#    vars_name = vars_name,
#    name = "RCT",
#    data.public = FALSE,
#    isTrial = TRUE
#  )
#  
#  head(source.obj$data)
#  
#  # Estimate the weighted conditional average treatment effect of source.obj
#  strata <- c("x1","x4")
#  source.rep.obj <- SEstimator_wrapper(Estimator = "Exact",
#                                       target.obj = target.obj,
#                                       source.obj = source.obj,
#                                       selection_predictors =
#                                         selection_predictors)
#  source.rep.obj$EstimateRep(stratification = strata, stratification_joint = TRUE)
#  
#  # Validate
#  fusion <- Fusion$new(target.obj,
#                       source.obj,
#                       source.rep.obj)
#  
#  fusion$plot()
#  fusion$print()
#  fusion$evaluate()

## ----eval=FALSE---------------------------------------------------------------
#  library(dplyr)
#  source.data <- RCTrep::source.data
#  target.data <- RCTrep::target.data
#  
#  # Identification
#  vars_name <- list(outcome_predictors = c("x1","x2","x3","x4","x5","x6"),
#                    treatment_name = c('z'),
#                    outcome_name = c('y')
#  )
#  
#  # Generate target.obj using full dataset
#  target.obj <- TEstimator_wrapper(
#    Estimator = "Crude",
#    data = target.data,
#    vars_name = vars_name,
#    name = "RCT",
#    data.public = FALSE,
#    isTrial = TRUE
#  )
#  
#  # Get unbiased estimates of conditional average treatment effect
#  vars_rct <- c("x1","x2","x3","x4","x5","x6")
#  RCT.estimates <- list(ATE_mean = target.obj$estimates$ATE$est,
#                        ATE_se = target.obj$estimates$ATE$se,
#                        CATE_mean_se = target.obj$get_CATE(vars_rct,FALSE))

## ----eval=FALSE---------------------------------------------------------------
#  emp.p1 <- mean(target.data$x1)
#  emp.p2 <- mean(target.data$x2)
#  emp.p3 <- mean(target.data$x3)
#  emp.p4 <- mean(target.data$x4)
#  emp.p5 <- mean(target.data$x5)
#  emp.p6 <- mean(target.data$x6)
#  t.d <- target.data[,vars_rct]
#  n <- dim(source.data)[1]
#  pw.cor <- gdata::upperTriangle(cor(t.d), diag = FALSE, byrow = TRUE)
#  synthetic.data <- RCTrep::GenerateSyntheticData(
#    margin_dis="bernoulli",
#    N = n,
#    margin = list(emp.p1, emp.p2, emp.p3, emp.p4, emp.p5, emp.p6),
#    var_name = vars_rct,
#    pw.cor = pw.cor)

## ----eval=FALSE---------------------------------------------------------------
#  synthetic.data <- semi_join(synthetic.data, source.data, by = vars_rct)
#  target.obj <- TEstimator_Synthetic$new(data = synthetic.data,
#                                         estimates=RCT.estimates,
#                                         vars_name = vars_name,
#                                         name = "RCT",
#                                         isTrial = TRUE,
#                                         data.public = TRUE)
#  
#  # Estimate conditional average treatment effect
#  source.data <- semi_join(source.data, synthetic.data, by = vars_rct)
#  source.obj <- TEstimator_wrapper(
#    Estimator = "G_computation",
#    data = source.data,
#    vars_name = vars_name,
#    outcome_method = "glm",
#    outcome_form=y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
#    name = "RWD",
#    data.public = TRUE
#  )
#  
#  # Estimate weighted conditional average treatment effect
#  source.rep.obj <- SEstimator_wrapper(Estimator="Exact",
#                                       target.obj=target.obj,
#                                       source.obj=source.obj,
#                                       selection_predictors=c("x2","x6"))
#  source.rep.obj$EstimateRep(stratification = vars_rct,
#                             stratification_joint = FALSE)
#  
#  # Combine objects and validate estimates
#  fusion <- Fusion$new(target.obj,
#                       source.obj,
#                       source.rep.obj)
#  fusion$plot()
#  fusion$evaluate()