## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- echo = FALSE, include = FALSE------------------------------------------- library(RNGforGPD) library(corpcor) library(mvtnorm) library(Matrix) ## ----------------------------------------------------------------------------- GenUniGpois(2, 0.9, 5000, method = "Branching") GenUniGpois(5, -0.4, 5000, method = "Inversion") GenUniGpois(12, 0.5, 5000, method = "Normal-Approximation") data = GenUniGpois(3, 0.9, 10, method = "Build-Up", details = FALSE) data data = GenUniGpois(10, 0.4, 10, method = "Chop-Down", details = FALSE) data ## ----------------------------------------------------------------------------- set.seed(3406) ComputeCorrGpois(c(3, 2, 5, 4), c(0.3, 0.2, 0.5, 0.6), verbose = FALSE) ComputeCorrGpois(c(4, 5), c(-0.45, -0.11), verbose = FALSE) ## ----------------------------------------------------------------------------- ValidCorrGpois(matrix(c(1, 0.9, 0.9, 1), byrow = TRUE, nrow = 2), c(0.5, 0.5), c(0.1, 0.105), verbose = TRUE) ValidCorrGpois(matrix(c(1, 0.9, 0.9, 1), byrow = TRUE, nrow = 2), c(3, 2), c(-0.3, -0.2), verbose = TRUE) ## ----------------------------------------------------------------------------- QuantileGpois(0.98, 1, -0.2, details = TRUE) QuantileGpois(0.80, 2, 0.025, details = FALSE) ## ----------------------------------------------------------------------------- set.seed(3406) CorrNNGpois(c(0.1,10), c(0.1, 0.2),0.5) lambda.vec = c(-0.2, 0.2, -0.3) theta.vec = c(1, 3, 4) M = c(0.352, 0.265, 0.342) N = diag(3) N[lower.tri(N)] = M TV = N + t(N) diag(TV) = 1 cstar = CmatStarGpois(TV, theta.vec, lambda.vec, verbose = TRUE) cstar ## ----------------------------------------------------------------------------- set.seed(3406) lambda.vec = c(-0.2, 0.2, -0.3) theta.vec = c(1, 3, 4) M = c(0.352, 0.265, 0.342) N = diag(3) N[lower.tri(N)] = M TV = N + t(N) diag(TV) = 1 cstar = CmatStarGpois(TV, theta.vec, lambda.vec, verbose = TRUE) sample.size = 10000; no.gpois = 3 data = GenMVGpois(sample.size, no.gpois, cstar, theta.vec, lambda.vec, details = FALSE) apply(data, 2, mean) # empirical means theta.vec / (1 - lambda.vec) # theoretical means apply(data, 2, var) # empirical variances theta.vec / (1 - lambda.vec)^3 # theoretical variances cor(data) # empirical correlation matrix TV # specified correlation matrix