## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE,comment = "#>", echo = TRUE,cache = TRUE, dev = "png") ot_eval = TRUE ## ----setup,warning = FALSE---------------------------------------------------- # Load libraries req_packs = c("devtools","smarter","ggplot2","reshape2", "survival","ggdendro","MiRKAT","ROKET") for(pack in req_packs){ library(package = pack,character.only = TRUE) } # List package's exported functions ls("package:ROKET") # Fix seed set.seed(2) ## ----inputs,eval = ot_eval---------------------------------------------------- # number of samples NN = 30 NN_nms = sprintf("S%s",seq(NN)) # number of pathways PP = 4 PP_nms = sprintf("P%s",seq(PP)) # number of genes GG = 30 GG_nms = sprintf("G%s",seq(GG)) # bound for gene similarity of two genes on same or different pathway bnd_same = 0.75 # Gene and pathway relationship GP = smart_df(PATH = sample(seq(PP),GG,replace = TRUE), GENE = seq(GG)) table(GP$PATH) # gene-gene similarity matrix GS = matrix(NA,GG,GG) dimnames(GS) = list(GG_nms,GG_nms) diag(GS) = 1 tmp_mat = t(combn(seq(GG),2)) for(ii in seq(nrow(tmp_mat))){ G1 = tmp_mat[ii,1] G2 = tmp_mat[ii,2] same = GP$PATH[GP$GENE == G1] == GP$PATH[GP$GENE == G2] if( same ) GS[G1,G2] = runif(1,bnd_same,1) else GS[G1,G2] = runif(1,0,1 - bnd_same) } GS[lower.tri(GS)] = t(GS)[lower.tri(GS)] # round(GS,3) ## ----gene_sim,fig.dim = c(8,5),echo = FALSE,results = "hide",eval = ot_eval---- show_tile = function(MAT,LABEL,TYPE = NULL, LABx = NULL,LABy = NULL,DIGITS = 1){ min_val = min(MAT) max_val = max(MAT) med_val = (min_val + max_val) / 2 if( is.null(TYPE) ) stop("Specify TYPE") if( isSymmetric(MAT) ) MAT[upper.tri(MAT,diag = !TRUE)] = NA if( TYPE == "GSIM" ){ max_val = 1 med_val = 0.5 } # else if( TYPE == "DIST" ){ # max_val = max(c(1,max(MAT))) #} dat = melt(MAT,na.rm = TRUE) # class(dat); dim(dat); dat[1:5,] gg = ggplot(data = dat,aes(x = Var1,y = Var2,fill = value)) + geom_tile(color = "black") + ggtitle(LABEL) + labs(fill = "Value") if( is.null(LABx) ){ gg = gg + xlab("") } else { gg = gg + xlab(LABx) } if( is.null(LABy) ){ gg = gg + ylab("") } else { gg = gg + ylab(LABy) } if( max(dim(MAT)) <= 10 && DIGITS >= 0 ) gg = gg + geom_text(mapping = aes(label = smart_digits(value,DIGITS))) if( TYPE %in% c("GSIM","DIST") ){ gg = gg + scale_fill_gradient2(midpoint = med_val,low = "deepskyblue", mid = "white",high = "red",limit = c(min_val,max_val)) } else if( TYPE == "MUT" ){ gg = gg + scale_fill_gradient2(low = "black", high = "red",limit = c(min_val,max_val)) } gg = gg + guides(fill = guide_colorbar(frame.colour = "black")) + scale_x_discrete(guide = guide_axis(n.dodge = 2)) + scale_y_discrete(guide = guide_axis(n.dodge = 2)) gg = gg + theme(legend.position = "right", # legend.key.width = unit(1.5,'cm'), legend.key.height = unit(1,'cm'), legend.text = element_text(size = 12), legend.title = element_text(size = 12,hjust = 0.5), text = element_text(size = 12), panel.background = element_blank(), panel.grid.major = element_line(colour = "grey50", size = 0.5,linetype = "dotted"), axis.text = element_text(face = "italic"), axis.text.x = element_text(angle = 0), plot.title = element_text(hjust = 0.5)) return(gg) } hout = hclust(as.dist(1 - GS)) ord = hout$labels[hout$order] show_tile(MAT = GS[ord,ord], LABEL = "Simulated Gene Similarity", TYPE = "GSIM",DIGITS = 2) show_tile(MAT = 1 - GS[ord,ord], LABEL = "Simulated Gene Dissimilarity", TYPE = "GSIM",DIGITS = 2) ## ----gene_muts,fig.dim = c(8,6),eval = ot_eval-------------------------------- # Mutated gene statuses prob_mut = 0.2 prob_muts = c(1 - prob_mut,prob_mut) while(TRUE){ ZZ = matrix(sample(c(0,1),NN*GG,replace = TRUE,prob = prob_muts),NN,GG) # Ensure each sample has at least one mutated gene if( min(rowSums(ZZ)) > 0 ) break } dimnames(ZZ) = list(NN_nms,GG_nms) show_tile(MAT = ZZ, LABEL = "Mutation Status: Gene by Sample", TYPE = "MUT",DIGITS = 0) # Store all distances DD = array(data = NA,dim = c(NN,NN,5)) dimnames(DD)[1:2] = list(NN_nms,NN_nms) dimnames(DD)[[3]] = c("EUC","OT_Balanced",sprintf("OT_LAM%s",c(0.5,1.0,5.0))) ## ----mutfreq,fig.dim = c(8,5),eval = ot_eval---------------------------------- freq = colSums(ZZ); # freq dat = smart_df(GENE = names(freq),FREQ = as.integer(freq)) dat$GENE = factor(dat$GENE,levels = names(sort(freq,decreasing = TRUE))) # dat ggplot(data = dat,mapping = aes(x = GENE,y = FREQ)) + geom_bar(stat = "identity") + xlab("Gene") + ylab("Mutation Frequency") + scale_x_discrete(guide = guide_axis(n.dodge = 2)) ## ----euc,fig.dim = c(8,5),eval = ot_eval-------------------------------------- DD[,,"EUC"] = as.matrix(dist(ZZ,diag = TRUE,upper = TRUE)) hout = hclust(as.dist(DD[,,"EUC"])) ord = hout$labels[hout$order] show_tile(MAT = DD[,,"EUC"][ord,ord], LABEL = "Euclidean Pairwise Distances", TYPE = "DIST",DIGITS = 2) ## ----balOT,fig.dim = c(8,5),eval = ot_eval------------------------------------ # Pick two samples ii = 1 jj = 2 ZZ[c(ii,jj),colSums(ZZ[c(ii,jj),]) > 0] outOT = run_myOT(XX = ZZ[ii,],YY = ZZ[jj,], COST = 1 - GS,EPS = 1e-3,LAMBDA1 = 1, LAMBDA2 = 1,balance = TRUE,verbose = FALSE) # str(outOT) # Optimal transport matrix tmpOT = outOT$OT tmpOT = tmpOT[rowSums(tmpOT) > 0,colSums(tmpOT) > 0] show_tile(MAT = tmpOT,LABEL = "Balanced OT (showing only genes mutated in each sample)", TYPE = "DIST",LABx = sprintf("Sample %s",ii), LABy = sprintf("Sample %s",jj), DIGITS = 2) # Pairwise distance outOT$DIST ## ----unbal_OT,fig.dim = c(8,5),eval = ot_eval--------------------------------- ZZ[c(ii,jj),colSums(ZZ[c(ii,jj),]) > 0] LAM = 0.5 outOT = run_myOT(XX = ZZ[ii,],YY = ZZ[jj,], COST = 1 - GS,EPS = 1e-3,LAMBDA1 = LAM, LAMBDA2 = LAM,balance = FALSE,verbose = FALSE) # str(outOT) # Optimal transport matrix tmpOT = outOT$OT tmpOT = tmpOT[rowSums(tmpOT) > 0,colSums(tmpOT) > 0] show_tile(MAT = tmpOT, LABEL = "Unbalanced OT (showing only genes mutated in each sample)",TYPE = "DIST", LABx = sprintf("Sample %s",ii), LABy = sprintf("Sample %s",jj), DIGITS = 2) # Pairwise distance outOT$DIST ## ----all_samp_balOT,fig.dim = c(8,5),eval = ot_eval--------------------------- outOTs = run_myOTs(ZZ = t(ZZ),COST = 1 - GS, EPS = 1e-3,balance = TRUE,LAMBDA1 = 1, LAMBDA2 = 1,conv = 1e-5,max_iter = 3e3, ncores = 1,verbose = FALSE) hout = hclust(as.dist(outOTs)) ord = hout$labels[hout$order] show_tile(MAT = outOTs[ord,ord], LABEL = "Balanced OT Distances", TYPE = "DIST",DIGITS = 1) ## ----full_OT_calc,fig.dim = c(8,5),eval = ot_eval----------------------------- LAMs = c(0,0.5,1.0,5.0) for(LAM in LAMs){ # LAM = LAMs[2] BAL = ifelse(LAM == 0,TRUE,FALSE) LAM2 = ifelse(BAL,1,LAM) outOTs = run_myOTs(ZZ = t(ZZ),COST = 1 - GS, EPS = 1e-3,balance = BAL,LAMBDA1 = LAM2, LAMBDA2 = LAM2,conv = 1e-5,max_iter = 3e3, ncores = 1,verbose = FALSE) hout = hclust(as.dist(outOTs)) ord = hout$labels[hout$order] LABEL = ifelse(BAL,"OT Distances (Balanced)", sprintf("OT Distances (Lambda = %s)",LAM)) LABEL2 = ifelse(BAL,"OT_Balanced",sprintf("OT_LAM%s",LAM)) gg = show_tile(MAT = outOTs[ord,ord], LABEL = LABEL,TYPE = "DIST",DIGITS = 2) print(gg) DD[,,LABEL2] = outOTs rm(outOTs) } ## ----dendro,fig.dim = c(8,5),eval = ot_eval----------------------------------- nms = dimnames(DD)[[3]]; nms for(nm in nms){ # nm = nms[2] hout = hclust(as.dist(DD[,,nm])) hdend = as.dendrogram(hout) dend_data = dendro_data(hdend,type = "rectangle") gg = ggplot(dend_data$segments) + geom_segment(aes(x = x,y = y,xend = xend,yend = yend)) + ggtitle(nm) + xlab("") + ylab("") + geom_text(data = dend_data$labels, mapping = aes(x,y,label = label),vjust = 0.5,hjust = 1) + theme_dendro() + coord_flip() + theme(plot.title = element_text(hjust = 0.5)) print(gg) rm(hout,hdend,dend_data,gg) } ## ----eval = FALSE------------------------------------------------------------- # # For example, with Euclidean distance # KK = MiRKAT::D2K(D = DD[,,"EUC"]) # KK = list(EUC = KK) ## ----eval = FALSE------------------------------------------------------------- # KK = list() # # for(nm in dimnames(DD)[[3]]){ # KK[[nm]] = MiRKAT::D2K(D = DD[,,nm]) # } ## ----eval = FALSE------------------------------------------------------------- # # Continuous # out_LM = lm(Y ~ .,data = data.frame(X)) # RESI = residuals(out_LM) # # # Logistic # out_LOG = glm(Y ~ .,data = data.frame(X),family = "binomial") # RESI = residuals(out_LOG) # # # Survival # out_CX = coxph(Surv(TIME,CENS) ~ .,data = data.frame(X)) # RESI = residuals(out_CX) ## ----eval = FALSE------------------------------------------------------------- # nPERMS = 1e5 # nKK = length(KK) # # # Array of kernels # aKK = array(data = NA,dim = dim(DD), # dimnames = dimnames(DD)) # for(nm in dimnames(DD)[[3]]){ # aKK[,,nm] = KK[[nm]] # } # # # Create OMNI matrix # OMNI = matrix(0,nrow = 2,ncol = dim(aKK)[3], # dimnames = list(c("EUC","OT"),dimnames(aKK)[[3]])) # OMNI["EUC","EUC"] = 1 # OMNI["OT",grepl("^OT",colnames(OMNI))] = 1 # OMNI # # # Hypothesis Testing # ROKET::kernTEST(RESI = RESI, # KK = aKK, # OMNI = OMNI, # nPERMS = nPERMS, # ncores = 1) ## ----------------------------------------------------------------------------- sessionInfo()