## ----opts, echo=FALSE------------------------------------------------------------------------- knitr::opts_chunk$set(fig.width=5, fig.height=5) oopt <- options(width=96) .format <- knitr::opts_knit$get("rmarkdown.pandoc.to") .tag <- function(N, cap ) ifelse(.format == "html", paste("Figure", N, ":", cap), cap) ## ----RPointCloud------------------------------------------------------------------------------ library(RPointCloud) ## ----libpack---------------------------------------------------------------------------------- suppressMessages( library(Mercator) ) library(ClassDiscovery) library(Polychrome) data(Dark24) data(Light24) suppressMessages( library(igraph) ) suppressMessages( library("ape") ) suppressPackageStartupMessages( library(circlize) ) ## ----cytof------------------------------------------------------------------------------------ data(cytof) ls() dim(AML10.node287) colnames(AML10.node287) amldist <- dist(AML10.node287) ## ----fig01, fig.width = 9, fig.cap = .tag(1, "The Rips barcode diagram from TDA.")------------ diag <- AML10.node287.rips[["diagram"]] opar <- par(mfrow = c(1,2)) plot(diag, barcode = TRUE, main = "Barcode") plot(diag, main = "Rips Diagram") par(opar) rm(opar) ## ----merc------------------------------------------------------------------------------------- mercury <- Mercator(amldist, metric = "euclidean", method = "hclust", K = 8) mercury <- addVisualization(mercury, "mds") mercury <- addVisualization(mercury, "tsne") mercury <- addVisualization(mercury, "umap") mercury <- addVisualization(mercury, "som") ## ----fig03, fig.width = 9, fig.height = 12, fig.cap = .tag(3, "Mercator Visualizations of the distance matrix.")---- opar <- par(mfrow = c(3,2), cex = 1.1) plot(mercury, view = "hclust") plot(mercury, view = "mds", main = "Mult-Dimensional Scaling") plot(mercury, view = "tsne", main = "t-SNE") plot(mercury, view = "umap", main = "UMAP") barplot(mercury, main = "Silhouette Width") plot(mercury, view = "som", main = "Self-Organizing Maps") par(opar) rm(opar) ## ----fig04, fig.cap = .tag(4, "Hierarchical connections between zero cycles.")---------------- nzero <- sum(diag[, "dimension"] == 0) cycles <- AML10.node287.rips[["cycleLocation"]][1:nzero] L <- sapply(cycles, length) cycles <- cycles[L > 0] W <- mercury@view[["umap"]]$layout plot(W, main = "Connected Zero Cycles") for (cyc in cycles) { points(W[cyc[1], , drop = FALSE], pch = 16,col = "red") X <- c(W[cyc[1], 1], W[cyc[2],1]) Y <- c(W[cyc[1], 2], W[cyc[2],2]) lines(X, Y) } ## ----igraph----------------------------------------------------------------------------------- edges <- t(do.call(cbind, cycles)) # this creates an "edgelist" G <- graph_from_edgelist(edges) G <- set_vertex_attr(G, "label", value = attr(amldist, "Labels")) ## ----layouts---------------------------------------------------------------------------------- set.seed(2734) Lt <- layout_as_tree(G) L <- layout_with_fr(G) ## ----fig05, fig.cap = .tag(5, "Two igraph depictions of the zero cycle structure."), fig.width = 10---- opar <- par(mfrow = c(1,2), mai = c(0.01, 0.01, 1.02, 0.01)) plot(G, layout = Lt, main = "As Tree") plot(G, layout = L, main = "Fruchterman-Reingold") par(opar) ## ----keg-------------------------------------------------------------------------------------- keg <- cluster_edge_betweenness(G) table(membership(keg)) pal <- Dark24[membership(keg)] ## ----fig06, fig.width = 6, fig.height = 6, fig.cap = .tag(6, "Community structure, simplified.")---- is.hierarchical(keg) H <- as.hclust(keg) H$labels <- attr(amldist, "Labels") K <- 10 colset <- Light24[cutree(H, k=K)] G2 <- set_vertex_attr(G, "color", value = colset) e <- 0.01 opar <- par(mai = c(e, e, e, e)) plot(G2, layout = L) par(opar) ## ----fig08, fig.width=7, fig.height = 7, fig.cap = .tag(8, "Cladogram realization, from the ape package.")---- P <- as.phylo(H) opar <- par(mai = c(0.01, 0.01, 1.0, 0.01)) plot(P, type = "u", tip.color = colset, cex = 1.2, main = "Ape/Cladogram") par(opar) rm(opar) ## ----views------------------------------------------------------------------------------------ U <- mercury@view[["mds"]] V <- mercury@view[["tsne"]]$Y W <- mercury@view[["umap"]]$layout ## ----fig10, fig.width = 9, fig.cap = .tag(10, "UMAP visualizations with AML10.node287 features.")---- featKi67 <- Feature(AML10.node287[,"Ki-67"], "Ki-67", c("cyan", "red"), c("Low", "High")) featCD99 <- Feature(AML10.node287[,"CD99"], "CD99", c("green", "magenta"), c("Low", "High")) opar <- par(mfrow = c(1,2)) plot(W, main = "UMAP; Ki-67", xlab = "U1", ylab = "U2") points(featKi67, W, pch = 16, cex = 1.4) plot(W, main = "UMAP; CD99", xlab = "U1", ylab = "U2") points(featCD99, W, pch = 16, cex = 1.4) par(opar) rm(opar) ## ----persistence------------------------------------------------------------------------------ persistence <- diag[, "Death"] - diag[, "Birth"] ## ----d0--------------------------------------------------------------------------------------- d0 <- persistence[diag[, "dimension"] == 0] d0 <- d0[d0 < 5] summary(d0) mu <- mean(d0) nu <- median(d0) sigma <- sd(d0) shape <- mu^2/sigma^2 rate <- mu/sigma^2 xx <- seq(0, 4, length = 100) yy <- dgamma(xx, shape = shape, rate = rate) hist(d0, breaks = 123, freq = FALSE) lines(xx, yy, col = "purple", lwd = 2) ## ----d1--------------------------------------------------------------------------------------- d1 <- persistence[diag[, "dimension"] == 1] ef <- ExpoFit(d1) # should be close to log(2)/median? plot(ef) eb <- EBexpo(d1, 200) hist(eb) plot(eb, prior = 0.56) sum(d1 > cutoff(0.8, 0.56, eb)) # posterior 80%, prior 0.56 cutoff(0.8, 0.56, eb) sum(d1 > 0.237) # post 80% which(d1 > 0.237) which.max(d1) ## --------------------------------------------------------------------------------------------- cyc1 <- Cycle(AML10.node287.rips, 1, 103, "forestgreen") cyc1@index ## ----fig.width = 12--------------------------------------------------------------------------- cyc2 <- Cycle(AML10.node287.rips, 1, 96, "red") cyc3 <- Cycle(AML10.node287.rips, 1, 87, "purple") opar <- par(mfrow = c(1, 3)) plot(cyc1, W, lwd = 2, pch = 16, col = "gray", xlab = "U1", ylab = "U2", main = "UMAP") lines(cyc2, W, lwd=2) lines(cyc3, W, lwd=2) plot(U, pch = 16, col = "gray", main = "MDS") lines(cyc1, U, lwd = 2) lines(cyc2, U, lwd = 2) lines(cyc3, U, lwd = 2) plot(V, pch = 16, col = "gray", main = "t-SNE") lines(cyc1, V, lwd = 2) lines(cyc2, V, lwd = 2) lines(cyc3, V, lwd = 2) par(opar) rm(opar) ## ----fig.width = 8, fig.height = 8------------------------------------------------------------ poof <- angleMeans(W, AML10.node287.rips, cyc3, AML10.node287) poof[is.na(poof)] <- 0 angle.df <- poof[, c("Ki-67", "CD99", "pRb", "PCNA", "CycA", "CycB")] colorScheme <- list(c(M = "green", U = "magenta"), c(Hi = "cyan", Lo ="red"), c(Hi = "blue", Lo = "yellow"), c(Hi = "#dddddd", Lo = "#111111"), c(No = "#dddddd", Yes = "brown"), c(No = "#dddddd", Yes = "purple")) annote <- LoopCircos(cyc1, angle.df, colorScheme) image(annote) ## ----echo = FALSE, eval = FALSE--------------------------------------------------------------- # M <- matrix(U <- unlist(colorScheme), ncol = 2, byrow = TRUE) # N <- matrix(1:12, nrow = 2) # opar <- par(mai = c(0, 2, 0, 2)) # image(1:2, 1:6, N, col = U, xaxt = "n", yaxt = "n", xlab = "", ylab = "") # mtext(sapply(colorScheme, names)[1,], side = 2 , at = 1:6, las = 2, line = 1, adj = 1) # mtext(paste(sapply(colorScheme, names)[2,], # colnames(angle.df), sep = ", "), # side = 4 , at = 1:6, las = 2, line = 1, adj = 0) # par(opar) ## ----d2--------------------------------------------------------------------------------------- d2 <- persistence[diag[, "dimension"] == 2] ef <- ExpoFit(d2) # should be close to log(2)/median? plot(ef) eb <- EBexpo(d2, 200) hist(eb) plot(eb, prior = 0.75) sum(d2 > cutoff(0.8, 0.75, eb)) # posterior 80%, prior 0.56 sum(d2 > cutoff(0.95, 0.75, eb)) # posterior 90%, prior 0.56 cutoff(0.95, 0.75, eb) sum(d2 > 0.032) # post 90% which(d2 > 0.032) ## --------------------------------------------------------------------------------------------- vd <- getCycle(AML10.node287.rips, 2) mds <- cmdscale(amldist, k = 3) support <- cycleSupport(vd, mds) ## ----cleanup------------------------------------------------------------------ options(oopt) #rm(list = ls())