## ----echo=FALSE--------------------------------------------------------------- knitr::opts_chunk$set(warning=FALSE, fig.height = 6, fig.width = 8, fig.retina=1, fig.keep='high', fig.align='center') ## ----------------------------------------------------------------------------- library(Radviz) ## ----------------------------------------------------------------------------- library(ggplot2) library(dplyr) library(tidyr) ## ----------------------------------------------------------------------------- library(bodenmiller) data(refPhenoMat) data(refFuncMat) data(refAnnots) ref.df <- data.frame(refAnnots, refPhenoMat, refFuncMat) ## ----------------------------------------------------------------------------- trans <- function(coln) do.L(coln,fun=function(x) quantile(x,c(0.005,0.995))) ## ----------------------------------------------------------------------------- hist(ref.df$CD3) abline(v=quantile(ref.df$CD3,c(0.005,0.995)), col=2,lty=2) ## ----------------------------------------------------------------------------- ct.S <- make.S(dimnames(refPhenoMat)[[2]]) ## ----------------------------------------------------------------------------- ## compute the similarity matrix ct.sim <- cosine(as.matrix(ref.df[,row.names(ct.S)])) ## the current Radviz-independent measure of projection efficiency in.da(ct.S,ct.sim) ## the current Radviz-independent measure of projection efficiency rv.da(ct.S,ct.sim) ## ----------------------------------------------------------------------------- optim.ct <- do.optimRadviz(ct.S,ct.sim,iter=100,n=1000) ct.S <- make.S(get.optim(optim.ct)) ## ----echo=FALSE,results='asis'------------------------------------------------ ksink <- lapply(dimnames(refPhenoMat)[[2]],function(x) cat(' *',x,'\n')) ## ----echo=FALSE,results='asis'------------------------------------------------ ksink <- lapply(row.names(ct.S),function(x) cat(' *',x,'\n')) ## ----------------------------------------------------------------------------- ct.S <- recenter(ct.S,'CD3') ## ----echo=FALSE,results='asis'------------------------------------------------ ksink <- lapply(row.names(ct.S),function(x) cat(' *',x,'\n')) ## ----------------------------------------------------------------------------- ct.rv <- do.radviz(ref.df,ct.S,trans=trans) ## ----------------------------------------------------------------------------- summary(ct.rv) ## ----------------------------------------------------------------------------- head(ct.rv) ## ----------------------------------------------------------------------------- dim(ct.rv) ## ----------------------------------------------------------------------------- ct.rv ## ----------------------------------------------------------------------------- plot(ct.rv,anchors.only=FALSE) ## ----------------------------------------------------------------------------- plot(ct.rv)+ geom_point() ## ----------------------------------------------------------------------------- plot(ct.rv)+ geom_point(data=. %>% arrange(CD4), aes(color=CD4))+ scale_color_gradient(low='grey80',high="dodgerblue4") ## ----------------------------------------------------------------------------- smoothRadviz(ct.rv) ## ----------------------------------------------------------------------------- smoothRadviz(ct.rv)+ geom_point(shape='.',alpha=1/5) ## ----------------------------------------------------------------------------- contour(ct.rv) ## ----------------------------------------------------------------------------- cur.pop <- 'igm+' sub.rv <- subset(ct.rv,refAnnots$Cells==cur.pop) smoothRadviz(ct.rv)+ geom_density2d(data=sub.rv$proj$data, aes(x=rx,y=ry), color='black') ## ----------------------------------------------------------------------------- hexplot(ct.rv) ## ----------------------------------------------------------------------------- hexplot(ct.rv,color='CD4') ## ----------------------------------------------------------------------------- hexplot(ct.rv,color='pS6') ## ----------------------------------------------------------------------------- hexplot(ct.rv,color='pAkt') ## ----------------------------------------------------------------------------- hexplot(ct.rv,color='pErk') ## ----results='asis'----------------------------------------------------------- ksink <- lapply(levels(refAnnots$Cells),function(x) cat(' *',x,'\n')) ## ----------------------------------------------------------------------------- bubbleRadviz(ct.rv,group = 'Cells') ## ----------------------------------------------------------------------------- bubbleRadviz(ct.rv,group = 'Cells',color='pS6') ## ----------------------------------------------------------------------------- data(untreatedPhenoMat) data(untreatedFuncMat) data(untreatedAnnots) untreated.df <- bind_rows(ref.df %>% mutate(Treatment='unstimulated', Source=as.character(Source), Cells=as.character(Cells)), data.frame(untreatedAnnots, untreatedPhenoMat, untreatedFuncMat) %>% mutate(Treatment=as.character(Treatment), Source=as.character(Source), Cells=as.character(Cells))) %>% mutate(Treatment=factor(Treatment), Treatment=relevel(Treatment,'unstimulated'), Cells=factor(Cells)) ## ----------------------------------------------------------------------------- tcells.df <- untreated.df %>% filter(Cells %in% c('cd4+','cd8+')) tcells.df %>% count(Cells,Treatment) ## ----------------------------------------------------------------------------- func.S <- make.S(dimnames(refFuncMat)[[2]]) func.sim <- cosine(as.matrix(tcells.df[,row.names(func.S)])) optim.func <- do.optimRadviz(func.S,func.sim,iter=100,n=1000) func.S <- make.S(tail(optim.func$best,1)[[1]]) func.rv <- do.radviz(tcells.df,func.S,trans=trans) ## ----fig.width=12------------------------------------------------------------- smoothRadviz(subset(func.rv,tcells.df$Treatment=='unstimulated'))+ facet_grid(~Cells) ## ----fig.width=12------------------------------------------------------------- plot(func.rv)+ geom_density2d(aes(color=Treatment))+ facet_grid(~Cells) ## ----------------------------------------------------------------------------- tcells.df %>% select(Cells, Treatment, pS6, pSlp76) %>% gather('Channel','value',one_of('pS6','pSlp76')) %>% ggplot(aes(x=Treatment,y=value))+ geom_boxplot(aes(fill=Treatment))+ facet_grid(Channel~Cells)+ theme_light()+ theme(axis.text.x=element_text(angle=45,hjust=1))