## ----label = setup, include = FALSE------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "img/", fig.align = "center", fig.dim = c(8, 6), out.width = "75%" ) library("RprobitB") options("RprobitB_progress" = FALSE) ## ----eval = FALSE------------------------------------------------------------- # fit_model(data = data) ## ----echo = FALSE------------------------------------------------------------- set.seed(1) ## ----message = FALSE---------------------------------------------------------- form <- choice ~ price + time + change + comfort | 0 data <- prepare_data(form = form, choice_data = train_choice, id = "deciderID", idc = "occasionID") model_train <- fit_model( data = data, scale = "price := -1" ) ## ----coef-model-train--------------------------------------------------------- coef(model_train) ## ----plot-coef-model-train---------------------------------------------------- plot(coef(model_train), sd = 3) ## ----str-gibbs-samples-------------------------------------------------------- str(model_train$gibbs_samples, max.level = 2, give.attr = FALSE) ## ----summary-model-train------------------------------------------------------ summary(model_train, FUN = c( "mean" = mean, "sd" = stats::sd, "R^" = R_hat, "custom_stat" = function(x) abs(mean(x) - median(x)) ) ) ## ----plot-trace-model-train--------------------------------------------------- par(mfrow = c(2, 1)) plot(model_train, type = "trace") ## ----plot-acf-model-train----------------------------------------------------- par(mfrow = c(2, 3)) plot(model_train, type = "acf") ## ----transform-model-train---------------------------------------------------- model_train <- transform(model_train, B = 1) ## ----eval = FALSE------------------------------------------------------------- # model_train <- transform(model_train, Q = 100) ## ----eval = FALSE------------------------------------------------------------- # model_train <- transform(model_train, scale = "Sigma_1 := 1")