## ----label = setup, include = FALSE------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "img/", fig.align = "center", fig.dim = c(8, 6), out.width = "75%" ) library("RprobitB") options("RprobitB_progress" = FALSE) ## ----message = FALSE---------------------------------------------------------- form <- choice ~ price + time + change + comfort | 0 data <- prepare_data(form = form, choice_data = train_choice, id = "deciderID", idc = "occasionID") model_train <- fit_model( data = data, scale = "price := -1" ) ## ----predict-model-train------------------------------------------------------ predict(model_train) ## ----predict-model-train-indlevel--------------------------------------------- pred <- predict(model_train, overview = FALSE) head(pred, n = 10) ## ----model-train-covs--------------------------------------------------------- get_cov(model_train, id = 1, idc = 8) ## ----model-train-coeffs------------------------------------------------------- coef(model_train) ## ----model-train-Sigma-------------------------------------------------------- point_estimates(model_train)$Sigma ## ----roc-example, warning = FALSE, message = FALSE, out.width = "50%", fig.dim = c(6,6)---- library(plotROC) ggplot(data = pred, aes(m = A, d = ifelse(true == "A", 1, 0))) + geom_roc(n.cuts = 20, labels = FALSE) + style_roc(theme = theme_grey) ## ----predict-model-train-given-covs-1----------------------------------------- predict( model_train, data = data.frame( "price_A" = c(100, 110), "price_B" = c(100, 100) ), overview = FALSE ) ## ----predict-model-train-given-covs-2----------------------------------------- predict( model_train, data = data.frame( "price_A" = c(100, 110), "comfort_A" = c(1, 0), "price_B" = c(100, 100), "comfort_B" = c(1, 1) ), overview = FALSE )