## ----global_options, include=FALSE-------------------------------------------- knitr::opts_chunk$set(fig.pos="h") ## ----structure_pdf,fig.cap="Main function to estimate channel capacity", ,echo=FALSE, fig.pos="!h"---- # All defaults knitr::include_graphics("plot_scheme.pdf") ## ----data_pdf, fig.cap="Conceptual representation of a generic experimental dataset needed for quantifying information transmission of a channel", ,echo=FALSE, fig.pos="!h"---- # All defaults knitr::include_graphics("table_data.pdf") ## ----init, include=FALSE------------------------------------------------------ library(grid) library(ggplot2) library(gridExtra) library(stringr) library(reshape2) display_plots=TRUE ## ----nfkb1, include=FALSE----------------------------------------------------- library(SLEMI) tempdata=data_nfkb[,1:4] tempdata=tempdata[!apply(tempdata,1,function(x) any(is.na(x))),] row.names(tempdata)<-NULL ## ----nfkb2, results="asis",echo=FALSE----------------------------------------- knitr::kable(rbind(tempdata[1:3,],tempdata[10001:10003,],tail(tempdata,3))) ## ----mwe1,include=FALSE------------------------------------------------------- xs=c(0,0.1,1,10) # concentration of input. tempdata = data.frame(input = factor(c(t(replicate(1000,xs))), levels=xs), output = c(matrix(rnorm(4000, mean=10*(xs/(1+xs)),sd=c(1,1,1,1)), ncol=4,byrow=TRUE) )) tempoutput <- capacity_logreg_main(dataRaw=tempdata, signal="input", response="output") ## ----MWE15, results="asis",echo=FALSE----------------------------------------- knitr::kable(rbind(tempdata[1:2,],tempdata[2001:2002,],tail(tempdata,2))) ## ----data_pdf2, fig.cap="Standard output graph of the minimal working example", echo=FALSE, fig.pos="h"---- # All defaults knitr::include_graphics("plot_1.pdf") ## ----mwe4,include=FALSE------------------------------------------------------- tempoutput_mi <- mi_logreg_main(dataRaw=tempdata, signal="input", response="output", pinput=rep(1/4,4)) ## ----mwe4b,include=TRUE------------------------------------------------------- print(paste("Mutual Information:", tempoutput_mi$mi,"; ", "Channel Capacity:", tempoutput$cc, sep=" ")) ## ----mwe4_2,include=FALSE----------------------------------------------------- tempoutput_mi <- mi_logreg_main(dataRaw=tempdata, signal="input", response="output", pinput=c(0.4,0.1,0.4,0.1)) ## ----mwe4b_2,include=TRUE----------------------------------------------------- print(paste("Mutual Information:", tempoutput_mi$mi,"; ", "Channel Capacity:", tempoutput$cc, sep=" ")) ## ----mwe5,include=FALSE------------------------------------------------------- tempoutput_probs <- prob_discr_pairwise(dataRaw=tempdata, signal="input", response="output") ## ----mwe5b,include=FALSE------------------------------------------------------ for (i in 1:4){ tempoutput_probs$prob_matr[i,i]=1 } ## ----data_pdf3, fig.cap="Standard output graph presenting probabilities of correct discrimination between each pair of input values.", ,echo=FALSE, fig.pos="h",out.height="9cm"---- # All defaults knitr::include_graphics("plot_2.pdf") ## ----diag2, include=FALSE----------------------------------------------------- library(SLEMI) library(ggplot2) library(gridExtra) ## ----data_pdf4, fig.cap="Standard output graph of the diagnostic procedures. P-values (PV) are based on empirical test either left- or right- sided. In the top axis, black dot represents the estimate of the channel capacity that involves the compete dataset, red dot is the mean of bootstrap procedures, while the bars are mean +/- sd. The remaining panels are histograms of all repetitions of a specific diagnostic procedure.", ,echo=FALSE, fig.pos="h"---- # All defaults knitr::include_graphics("plot_3.pdf") ## ----session------------------------------------------------------------------ sessionInfo()