## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----libraries---------------------------------------------------------------- library(SPAS) ## ----loaddata----------------------------------------------------------------- harrison.2011.chinook.F.csv <- textConnection(" 4 , 2 , 1 , 1 , 0 , 0 , 130 12 , 7 , 14 , 1 , 3 , 0 , 330 7 , 11 , 41 , 9 , 1 , 1 , 790 1 , 13 , 40 , 12 , 9 , 1 , 667 0 , 1 , 8 , 8 , 3 , 0 , 309 0 , 0 , 0 , 0 , 0 , 1 , 65 744 , 1187 , 2136 , 951 , 608 , 127 , 0") har.data <- as.matrix(read.csv(harrison.2011.chinook.F.csv, header=FALSE)) har.data ## ----fit1,results="hide"------------------------------------------------------ mod..1 <- SPAS.fit.model(har.data, model.id="No restrictions", row.pool.in=1:6, col.pool.in=1:6) ## ----mod1p-------------------------------------------------------------------- SPAS.print.model(mod..1) ## ----str1--------------------------------------------------------------------- cat("Names of objects at highest level\n") names(mod..1) cat("\n\nNames of estimates (both beta and real)\n") names(mod..1$est) cat("\n\nNames of real estimates\n") names(mod..1$est$real) ## ----fit2,results="hide"------------------------------------------------------ mod..2 <- SPAS.fit.model(har.data, model.id="Pooling some rows", row.pool.in=c("12","12","3","4","56","56"), col.pool.in=c(1,2,3,4,56,56)) ## ----mod2p-------------------------------------------------------------------- SPAS.print.model(mod..2) ## ----mod3, echo=TRUE---------------------------------------------------------- mod..3 <- SPAS.fit.model(har.data, model.id="A single row", row.pool.in=rep(1, nrow(har.data)-1), col.pool.in=c(1,2,3,4,56,56)) SPAS.print.model(mod..3) ## ----------------------------------------------------------------------------- mod..4 <- SPAS.fit.model(har.data, model.id="Pooled Peteren", row.pool.in=rep(1, nrow(har.data)-1), col.pool.in=rep(1, ncol(har.data)-1)) SPAS.print.model(mod..4) ## ----------------------------------------------------------------------------- mod..5 <- SPAS.fit.model(har.data, model.id="Logical Pooling some rows", row.pool.in=c("12","12","3","4","56","56"), row.physical.pool=FALSE, col.pool.in=c(1,2,3,4,56,56)) SPAS.print.model(mod..5) ## ----------------------------------------------------------------------------- mod..6 <- SPAS.fit.model(har.data, model.id="A single row - Logical Pool", row.pool.in=rep(1, nrow(har.data)-1), row.physical.pool=FALSE, col.pool.in=c(1,2,3,4,56,56)) SPAS.print.model(mod..6) mod..7 <- SPAS.fit.model(har.data, model.id="Pooled Peteren - Logical Pool", row.pool.in=rep(1, nrow(har.data)-1), row.physical.pool=FALSE, col.pool.in=rep(1, ncol(har.data)-1)) SPAS.print.model(mod..7) ## ----------------------------------------------------------------------------- mod..8 <- SPAS.fit.model(har.data, model.id="Logical Pooling pairs rows", row.pool.in=c("12","12","34","34","56","56"), row.physical.pool=FALSE, col.pool.in=c(1,2,3,4,56,56)) SPAS.print.model(mod..8) ## ----echo=TRUE---------------------------------------------------------------- model.list <- mget( ls()[grepl("^mod\\.\\.",ls())]) names(model.list) report <- plyr::ldply(model.list, function(x){ #browser() data.frame(#version=x$version, date = as.Date(x$date), model.id = x$model.info$model.id, s.a.pool =-1+nrow(x$fit.setup$pooldata), t.p.pool =-1+ncol(x$fit.setup$pooldata), logL.cond = x$model.info$logL.cond, np = x$model.info$np, AICc = x$model.info$AICc, gof.chisq = round(x$gof$chisq,1), gof.df = x$gof$chisq.df, gof.p = round(x$gof$chisq.p,3), kappa.after.lp = round(x$kappa.after.lp), Nhat = round(x$est$real$N), Nhat.se = round(x$se $real$N)) }) report