## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----message=FALSE, warning=FALSE--------------------------------------------- library(SPECK) library(Seurat) library(ggplot2) library(gridExtra) ## ----message=FALSE, warning=FALSE--------------------------------------------- data("pbmc.rna.mat") dim(pbmc.rna.mat) ## ----message=FALSE, warning=FALSE--------------------------------------------- speck.full <- speck(counts.matrix = pbmc.rna.mat, rank.range.end = 100, min.consec.diff = 0.01, rep.consec.diff = 2, manual.rank = NULL, max.num.clusters = 4, seed.rsvd = 1, seed.ckmeans = 2) speck.rank <- speck.full$rrr.rank paste("Rank: ", speck.rank, sep = "") plot(speck.full$component.stdev, ylab = "Stdev. of non-centered sample PCs", xlab = "Rank range", main = paste("Selected rank (k=", speck.rank, ")", sep="")) abline(v = speck.rank, lty = 2, col = "red") head(speck.full$clust.num); table(speck.full$clust.num) head(speck.full$clust.max.prop) speck.output <- speck.full$thresholded.mat paste("# of samples in RRR object:", dim(speck.output)[1]) paste("# of genes in RRR object:", dim(speck.output)[2]) SPECK_assay <- CreateAssayObject(counts = t(speck.output)) pbmc.rna.seurat <- CreateSeuratObject(counts = t(as.matrix(pbmc.rna.mat))) pbmc.rna.seurat[["SPECK"]] <- SPECK_assay ## ---- message=FALSE, warning=FALSE-------------------------------------------- DefaultAssay(pbmc.rna.seurat) <- "RNA" pbmc.rna.seurat <- NormalizeData(pbmc.rna.seurat) pbmc.rna.seurat <- FindVariableFeatures(pbmc.rna.seurat, selection.method = "vst", nfeatures = 2000) all.genes <- rownames(pbmc.rna.seurat) pbmc.rna.seurat <- ScaleData(pbmc.rna.seurat, features = all.genes) pbmc.rna.seurat <- RunPCA(pbmc.rna.seurat, features = VariableFeatures(object = pbmc.rna.seurat)) pbmc.rna.seurat <- FindNeighbors(pbmc.rna.seurat, dims = 1:10) pbmc.rna.seurat <- FindClusters(pbmc.rna.seurat, resolution = 0.5) pbmc.rna.seurat <- RunUMAP(pbmc.rna.seurat, dims = 1:10) ## ---- fig.width=7, fig.height=9, message=FALSE, warning=FALSE----------------- DefaultAssay(pbmc.rna.seurat) <- "RNA" p1 <- FeaturePlot(pbmc.rna.seurat, "CD14", cols = c("lightgrey", "#007ece")) + ggtitle("CD14 RNA") DefaultAssay(pbmc.rna.seurat) <- "SPECK" p2 <- FeaturePlot(pbmc.rna.seurat, "CD14", cols=c("lightgrey", "#E64B35CC")) + ggtitle("CD14 SPECK") DefaultAssay(pbmc.rna.seurat) <- "RNA" p3 <- FeaturePlot(pbmc.rna.seurat, "CD79B", cols = c("lightgrey", "#007ece")) + ggtitle("CD79B RNA") DefaultAssay(pbmc.rna.seurat) <- "SPECK" p4 <- FeaturePlot(pbmc.rna.seurat, "CD79B", cols=c("lightgrey", "#E64B35CC")) + ggtitle("CD79B SPECK") DefaultAssay(pbmc.rna.seurat) <- "RNA" p5 <- FeaturePlot(pbmc.rna.seurat, "CD19", cols = c("lightgrey", "#007ece")) + ggtitle("CD19 RNA") DefaultAssay(pbmc.rna.seurat) <- "SPECK" p6 <- FeaturePlot(pbmc.rna.seurat, "CD19", cols=c("lightgrey", "#E64B35CC")) + ggtitle("CD19 SPECK") grid.arrange(p2, p1, p4, p3, p6, p5, nrow = 3)