## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----vignetteSetup, echo=FALSE, message=FALSE, warning = FALSE---------------- ## For links library("BiocStyle") ## Track time spent on making the vignette startTime <- Sys.time() ## Bib setup library("RefManageR") ## Write bibliography information bib <- c( R = citation(), BiocStyle = citation("BiocStyle")[1], knitr =bibentry( bibtype = "InCollection", booktitle = "Implementing Reproducible Computational Research", title = "knitr: A Comprehensive Tool for Reproducible Research in R", author = as.person("Yihui Xie [aut]"), editor = as.person("Victoria Stodden, Friedrich Leisch, Roger D. Peng"), year = "2014", publisher = "Chapman and Hall/CRC", isbn = "978-1466561595", url = "https://www.routledge.com/Implementing-Reproducible-Research/Stodden-Leisch-Peng/p/book/9781466561595" ), Matrix = citation("Matrix")[1], RefManageR = citation("RefManageR")[1], rmarkdown = citation("rmarkdown")[1], S4Vectors = citation("S4Vectors")[1], sessioninfo = citation("sessioninfo")[1] ) ## ----'install', eval = FALSE-------------------------------------------------- # install.packages("SRTsim") ## ----setup, message = FALSE, warning = FALSE---------------------------------- library("SRTsim") ## ----'reference-based tissue-wise simulation'--------------------------------- ## explore example SRT data str(exampleLIBD) example_count <- exampleLIBD$count example_loc <- exampleLIBD$info[,c("imagecol","imagerow","layer")] colnames(example_loc) <- c("x","y","label") ## create a SRT object simSRT <- createSRT(count_in=example_count,loc_in =example_loc) ## Set a seed for reproducible simulation set.seed(1) ## Estimate model parameters for data generation simSRT1 <- srtsim_fit(simSRT,sim_schem="tissue") ## Generate synthetic data with estimated parameters simSRT1 <- srtsim_count(simSRT1) ## Explore the synthetic data simCounts(simSRT1)[1:5,1:5] simcolData(simSRT1) ## ----'reference-based domain-specific simulation'----------------------------- ## Set a seed for reproducible simulation set.seed(1) ## Estimate model parameters for data generation simSRT2 <- srtsim_fit(simSRT,sim_scheme='domain') ## Generate synthetic data with estimated parameters simSRT2 <- srtsim_count(simSRT2) ## Explore the synthetic data simCounts(simSRT2)[1:5,1:5] ## ----'tissue simulation metrics comparison'----------------------------------- ## Compute metrics simSRT1 <- compareSRT(simSRT1) ## Visualize Metrics visualize_metrics(simSRT1) ## ----'pattern comparison'----------------------------------------------------- visualize_gene(simsrt=simSRT1,plotgn = "ENSG00000183036",rev_y=TRUE) visualize_gene(simsrt=simSRT2,plotgn = "ENSG00000168314",rev_y=TRUE) ## ----createVignette, eval=FALSE----------------------------------------------- # ## Create the vignette # library("rmarkdown") # system.time(render("SRTsim.Rmd")) # # ## Extract the R code # library("knitr") # knit("SRTsim.Rmd", tangle = TRUE) ## ----reproduce1, echo=FALSE--------------------------------------------------- ## Date the vignette was generated Sys.time() ## ----reproduce2, echo=FALSE--------------------------------------------------- ## Processing time in seconds totalTime <- diff(c(startTime, Sys.time())) round(totalTime, digits = 3) ## ----reproduce3, echo=FALSE--------------------------------------------------- ## Session info library("sessioninfo") original <- options("width") options(width = 120) session_info() options(original) ## ----vignetteBiblio, results = 'asis', echo = FALSE, warning = FALSE, message = FALSE---- ## Print bibliography PrintBibliography(bib, .opts = list(hyperlink = "to.doc", style = "html"))