## ---- echo = FALSE, results = FALSE-------------------------------------- knitr::opts_chunk$set(collapse = TRUE) library(SSM) ## ------------------------------------------------------------------------ design <- seq(-1, 1, 0.25) responses <- sapply(design, "^", 2) s <- fit.ssm(design, responses) s ## ------------------------------------------------------------------------ predict(s, 0.5) plot(s) ## ---- fig.show='hold'---------------------------------------------------- # default behaviour s <- fit.ssm(design, responses); s # too large to fit s100 <- fit.ssm(design, responses, basis_size = 100); s100 # instabilty indicated by plot s70 <- fit.ssm(design, responses, basis_size = 70); s70 plot(s70, main = "70 terms") s50 <- fit.ssm(design, responses, basis_size = 50); s50 plot(s50, main = "50 terms") ## ------------------------------------------------------------------------ f <- function(x) sum(x * 1:3) + 5 * x[1]*x[2] design <- matrix(runif(300, -1, 1), ncol = 3) response <- apply(design, 1, f) s <- fit.ssm(design, response, SA = TRUE) s sensitivity.plot(s, "main_sobol", cex.main = 0.5) # The grey bars indicate interactions sensitivity.plot(s, "sobol", cex.main = 0.5) # This plots total indices for main effects, and total interaction indices for second order interactions sensitivity.plot(s, "total", cex.main = 0.5) ## ------------------------------------------------------------------------ # A stupid example, but fit new model without main effect of first variable s3 <- fit.ssm(design, response, SA = TRUE, exclude = list(1)) s3 sensitivity.plot(s3, "sobol", cex.main = 0.5) ## ------------------------------------------------------------------------ s <- fit.ssm(design, response, validation = TRUE) s ## ---- fig.show = 'hold'-------------------------------------------------- design <- seq(-1, 1, 0.25) responses <- sapply(design, "^", 2) s1 <- fit.ssm(design, responses, GP = TRUE) s2 <- fit.ssm(design, responses, GP = TRUE, type = "matern32") plot(s1, sub = "Squared exponential") plot(s2, sub = "Matern 3/2") ## ------------------------------------------------------------------------ # ten point design in two factors X <- matrix(runif(20, -1, 1), ncol = 2) Y <- apply(X, 1, sum) # fit SSM s <- fit.ssm(X, Y);s # fit SSM with same structure to first nine design points only s1 <- fit.ssm(X[1:9, ], Y[1:9], ssm = s);s1