## ----setup, include = FALSE--------------------------------------------------- library(SSP) library(ggplot2) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.retina=2, fig.align='center', fig.width = 7, fig.height = 5, warning = FALSE, message = FALSE ) ## ----eval=FALSE--------------------------------------------------------------- # library(SSP) # data(micromollusk) # # #Estimation of parameters # par.mic <- assempar(data = micromollusk, type = "P/A") # # #Simulation of data # sim.mic <- simdata(Par = par.mic, cases = 20, N = 100, site = 1) # # # Quality of simulated data # qua.mic <- datquality(data = micromollusk, dat.sim = sim.mic, Par = par.mic, transformation = "none", method = "jaccard") # # #Sampling and estimation of MultSE # samp.mic <- sampsd(sim.mic, par.mic, transformation = "P/A", method = "jaccard", n = 50, m = 1, k = 10) # # #Summarizing results # sum.mic <- summary_ssp(results = samp.mic, multi.site = FALSE) # # #Identification of optimal effort # opt.mic <- ioptimum(xx = sum.mic, multi.site = FALSE) # # #plot # fig.1 <- plot_ssp(xx = sum.mic, opt = opt.mic, multi.site = FALSE) # fig.1 ## ----echo = FALSE, out.width='100%', fig.align='center', fig.cap='Fig. 1. MultSE and sampling effort relationship using micromollusk simulated data'---- knitr::include_graphics('fig1.png') ## ----eval=FALSE--------------------------------------------------------------- # data(sponges) # # #Estimation of parameters # par.spo <- assempar(data = sponges, type = "counts") # # #Simulation of data # sim.spo <- simdata(Par = par.spo, cases = 10, N = 20, sites = 20) # # # Quality of simulated data # qua.spo <- datquality(data = sponges, dat.sim = sim.spo, Par = par.spo, transformation = "square root", method = "bray") # # #Sampling and estimation of MultSE # samp.spo <- sampsd(sim.spo, par.spo, transformation = "square root", # method = "bray", n = 20, m = 20, k = 10) # # #Summarizing results # sum.spo <- summary_ssp(results = samp.spo, multi.site = TRUE) # # #Identification of optimal effort # # opt.spo <- ioptimum(xx = sum.spo, multi.site = TRUE) # # #plot # fig.2 <- plot_ssp(xx = sum.spo, opt = opt.spo, multi.site = TRUE) # fig.2 # ## ----echo = FALSE, out.width='100%', fig.align='center', fig.cap='Fig. 2. MultSE and sampling effort relationship using sponge simulated data'---- knitr::include_graphics('fig2.png') ## ----------------------------------------------------------------------------- dat<-sponges[,2:length(sponges)] #Square root transformation of abundances dat.t<-sqrt(dat) #Bray-Curtys library(vegan) bc<-vegdist(dat.t, method = "bray") #function to estimate components of variation in PERMANOVA cv.permanova <- function(D, y) { D = as.matrix(D) N = dim(D)[1] g = length(levels(y[,1])) X = model.matrix(~y[,1]) #model matrix H = X %*% solve(t(X) %*% X) %*% t(X) #Hat matrix I = diag(N) #Identity matrix A = -0.5 * D^2 G = A - apply(A, 1, mean) %o% rep(1, N) - rep(1, N) %o% apply(A, 2, mean) + mean(A) MS1 = sum(G * t(H))/(g - 1) #Mean square of sites MS2 = sum(G * t(I - H))/(N - g) #Mean square of residuals CV1 = (MS1 - MS2)/(N/g)# Components of variation of sites CV2 = MS2 # Components of variation of samples CV = c(CV1, CV2) sqrtCV = sqrt(CV) return(sqrtCV) #square root of components of variation } cv<-cv.permanova(D = bc, y = sponges) cv