## ----setup, include = FALSE--------------------------------------------------- #file.edit(normalizePath("~/.Renviron")) LOCAL <- identical(Sys.getenv("LOCAL"), "TRUE") #LOCAL=TRUE knitr::opts_chunk$set(purl = LOCAL) knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- eval = FALSE------------------------------------------------------------ # devtools::install_github("fbertran/SelectBoost", ref = "doMC") ## ----loadresults, cache= FALSE, eval = LOCAL---------------------------------- library(SelectBoost) data(results_simuls_reverse_engineering_v3) colgrey=grey(.05,NULL) ## ----ranges, cache= FALSE, eval = LOCAL--------------------------------------- rangeCPy_S=range(sensitivity_C,sensitivity_PL,sensitivity_PL2,sensitivity_PL2_W,sensitivity_PL2_tW,sensitivity_PSel,sensitivity_PSel_W,sensitivity_PSel.5,sensitivity_PSel.e2,sensitivity_PSel.5.e2,sensitivity_robust,sensitivity_PB,predictive_positive_value_PB_095_075,predictive_positive_value_PB_075_075,sensitivity_PB_W) rangeCPy_PPV=range(predictive_positive_value_C,predictive_positive_value_PL,predictive_positive_value_PL2,predictive_positive_value_PL2_W,predictive_positive_value_PL2_tW,predictive_positive_value_PSel,predictive_positive_value_PSel_W,predictive_positive_value_PSel.5,predictive_positive_value_PSel.e2,predictive_positive_value_PSel.5.e2,predictive_positive_value_robust,predictive_positive_value_PB,predictive_positive_value_PB_095_075,predictive_positive_value_PB_075_075,predictive_positive_value_PB_W) rangeCPy_F=range(F_score_C,F_score_PL,F_score_PL2,F_score_PL2_W,F_score_PL2_tW,F_score_PSel,F_score_PSel_W,F_score_PSel.5,F_score_PSel.e2,F_score_PSel.5.e2,F_score_PB,F_score_PB_095_075,F_score_PB_075_075,F_score_PB_W) rangeCPx=range(test.seq_C,test.seq_PL,test.seq_PL2,test.seq_PL2_W,test.seq_PL2_tW,test.seq_PSel,test.seq_PSel_W,test.seq_PSel.5,test.seq_PSel.e2,test.seq_PSel.5.e2,test.seq_robust,test.seq_PB,test.seq_PB_095_075,test.seq_PB_075_075,test.seq_PB_W) ## ----artgraphs1, cache= FALSE, fig.width=6, eval = LOCAL---------------------- layout(matrix(1:6,nrow=2)) matplot(t(test.seq_PL2),t(sensitivity_PL2),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Lasso2",ylim=rangeCPy_S,col=grey(.05,NULL)) abline(v=nv_PL2,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PL2_W),t(sensitivity_PL2_W),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Lasso2_W",ylim=rangeCPy_S,col=grey(.05,NULL)) abline(v=nv_PL2_W,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PSel),t(sensitivity_PSel),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Stability_Selection",ylim=rangeCPy_S,col=grey(.05,NULL)) abline(v=nv_PSel,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PSel_W),t(sensitivity_PSel_W),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Stability_Selection_W",ylim=rangeCPy_S,col=grey(.05,NULL)) abline(v=nv_PSel_W,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB),t(sensitivity_PB),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Select_Boost",ylim=rangeCPy_S,col=grey(.05,NULL)) abline(v=nv_PB,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB_W),t(sensitivity_PB_W),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Select_Boost_W",ylim=rangeCPy_S,col=grey(.05,NULL)) abline(v=nv_PB_W,col=grey(.05,NULL),lty=3) ## ----artgraphs2, cache= FALSE, fig.width=6, fig.keep='none', eval = LOCAL----- layout(matrix(1:6,nrow=2)) matplot(t(test.seq_robust),t(sensitivity_robust),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Robust",ylim=rangeCPy_S,col=grey(.05,NULL)) abline(v=nv_robust,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB),t(sensitivity_PB),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Select_Boost",ylim=rangeCPy_S,col=grey(.05,NULL)) abline(v=nv_PB,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB_095_075),t(sensitivity_PB_095_075),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Select_Boost_095_075",ylim=rangeCPy_S,col=grey(.05,NULL)) abline(v=nv_PB_095_075,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB_075_075),t(sensitivity_PB_075_075),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Select_Boost_075_075",ylim=rangeCPy_S,col=grey(.05,NULL)) abline(v=nv_PB_075_075,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB_W),t(sensitivity_PB_W),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Select_Boost_W",ylim=rangeCPy_S,col=grey(.05,NULL)) abline(v=nv_PB_W,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PSel),t(sensitivity_PSel),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Stability_Selection",ylim=rangeCPy_S,col=grey(.05,NULL)) abline(v=nv_PSel,col=grey(.05,NULL),lty=3) ## ----artgraphs3, cache= FALSE, fig.width=6, eval = LOCAL---------------------- layout(matrix(1:6,nrow=2)) matplot(t(test.seq_PL2),t(predictive_positive_value_PL2),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Lasso2",ylim=rangeCPy_PPV,col=grey(.05,NULL)) abline(v=nv_PL2,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PL2_W),t(predictive_positive_value_PL2_W),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Lasso2_W",ylim=rangeCPy_PPV,col=grey(.05,NULL)) abline(v=nv_PL2_W,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PSel),t(predictive_positive_value_PSel),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Stability_Selection",ylim=rangeCPy_PPV,col=grey(.05,NULL)) abline(v=nv_PSel,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PSel_W),t(predictive_positive_value_PSel_W),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Stability_Selection_W",ylim=rangeCPy_PPV,col=grey(.05,NULL)) abline(v=nv_PSel_W,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB),t(predictive_positive_value_PB),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Select_Boost",ylim=rangeCPy_PPV,col=grey(.05,NULL)) abline(v=nv_PB,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB_W),t(predictive_positive_value_PB_W),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Select_Boost_Weighted",ylim=rangeCPy_PPV,col=grey(.05,NULL)) abline(v=nv_PB_W,col=grey(.05,NULL),lty=3) ## ----artgraphs4, cache= FALSE, fig.width=6, fig.keep='none', eval = LOCAL----- layout(matrix(1:6,nrow=2)) matplot(t(test.seq_robust),t(predictive_positive_value_robust),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Robust",ylim=rangeCPy_PPV,col=grey(.05,NULL)) abline(v=nv_robust,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB),t(predictive_positive_value_PB),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Select_Boost",ylim=rangeCPy_PPV,col=grey(.05,NULL)) abline(v=nv_PB,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB_095_075),t(predictive_positive_value_PB_095_075),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Select_Boost_095_075",ylim=rangeCPy_PPV,col=grey(.05,NULL)) abline(v=nv_PB_095_075,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB_075_075),t(predictive_positive_value_PB_075_075),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Select_Boost_075_075",ylim=rangeCPy_PPV,col=grey(.05,NULL)) abline(v=nv_PB_075_075,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB_W),t(predictive_positive_value_PB_W),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Select_Boost_Weighted",ylim=rangeCPy_PPV,col=grey(.05,NULL)) abline(v=nv_PB_W,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PSel),t(predictive_positive_value_PSel),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Stability_Selection",ylim=rangeCPy_PPV,col=grey(.05,NULL)) abline(v=nv_PSel,col=grey(.05,NULL),lty=3) ## ----artgraphs5, cache= FALSE, fig.width=6, eval = LOCAL---------------------- layout(matrix(1:6,nrow=2)) matplot(t(test.seq_PL2),t(F_score_PL2),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Lasso2",ylim=rangeCPy_F,col=grey(.05,NULL)) abline(v=nv_PL2,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PL2_W),t(F_score_PL2_W),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Lasso2_W",ylim=rangeCPy_F,col=grey(.05,NULL)) abline(v=nv_PL2_W,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PSel),t(F_score_PSel),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Stability_Selection",ylim=rangeCPy_F,col=grey(.05,NULL)) abline(v=nv_PSel,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PSel_W),t(F_score_PSel_W),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Stability_Selection_W",ylim=rangeCPy_F,col=grey(.05,NULL)) abline(v=nv_PSel_W,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB),t(F_score_PB),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Select_Boost",ylim=rangeCPy_F,col=grey(.05,NULL)) abline(v=nv_PB,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB_W),t(F_score_PB_W),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Select_Boost_Weighted",ylim=rangeCPy_F,col=grey(.05,NULL)) abline(v=nv_PB_W,col=grey(.05,NULL),lty=3) ## ----artgraphs6, cache= FALSE, fig.width=6, fig.keep='none', eval = LOCAL----- layout(matrix(1:6,nrow=2)) matplot(t(test.seq_robust),t(F_score_robust),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Robust",ylim=rangeCPy_F,col=grey(.05,NULL)) abline(v=nv_robust,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB),t(F_score_PB),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Select_Boost",ylim=rangeCPy_F,col=grey(.05,NULL)) abline(v=nv_PB,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB_095_075),t(F_score_PB_095_075),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Select_Boost_095_075",ylim=rangeCPy_F,col=grey(.05,NULL)) abline(v=nv_PB_095_075,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB_075_075),t(F_score_PB_075_075),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Select_Boost_075_075",ylim=rangeCPy_F,col=grey(.05,NULL)) abline(v=nv_PB_075_075,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PB_W),t(F_score_PB_W),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Select_Boost_Weighted",ylim=rangeCPy_F,col=grey(.05,NULL)) abline(v=nv_PB_W,col=grey(.05,NULL),lty=3) matplot(t(test.seq_PSel),t(F_score_PSel),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Stability_Selection",ylim=rangeCPy_F,col=grey(.05,NULL)) abline(v=nv_PSel,col=grey(.05,NULL),lty=3) ## ----graphs, cache= FALSE, fig.width=6, eval=FALSE---------------------------- # layout(matrix(1:6,nrow=2)) # matplot(t(test.seq_C),t(sensitivity_C),type="l",xlab="cutoff",ylab="Sensitivity",main="Cascade",ylim=rangeCPy_S,col=grey(.05,NULL)) # abline(v=nv_C,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PL),t(sensitivity_PL),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Lasso",ylim=rangeCPy_S,col=grey(.05,NULL)) # abline(v=nv_PL,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PL2_W),t(sensitivity_PL2_W),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Lasso2_W",ylim=rangeCPy_S,col=grey(.05,NULL)) # abline(v=nv_PL2_W,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PSel),t(sensitivity_PSel),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Stability_Selection",ylim=rangeCPy_S,col=grey(.05,NULL)) # abline(v=nv_PSel,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PSel_W),t(sensitivity_PSel_W),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Stability_Selection_W",ylim=rangeCPy_S,col=grey(.05,NULL)) # abline(v=nv_PSel_W,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PL2_tW),t(sensitivity_PL2_tW),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Lasso2_wrongW",ylim=rangeCPy_S,col=grey(.05,NULL)) # abline(v=nv_PL2_tW,col=grey(.05,NULL),lty=3) ## ----graphs2, cache= FALSE, fig.width=6, eval=FALSE--------------------------- # layout(matrix(1:6,nrow=2)) # matplot(t(test.seq_PSel),t(sensitivity_PSel),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Stability_Selection",ylim=rangeCPy_S,col=grey(.05,NULL)) # abline(v=nv_PSel,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PSel.5),t(sensitivity_PSel.5),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Stability_Selection_.5",ylim=rangeCPy_S,col=grey(.05,NULL)) # abline(v=nv_PSel.5,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PSel.e2),t(sensitivity_PSel.e2),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Stability_Selection.e2",ylim=rangeCPy_S,col=grey(.05,NULL)) # abline(v=nv_PSel.e2,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PSel.5.e2),t(sensitivity_PSel.5.e2),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Stability_Selection_.5.e2",ylim=rangeCPy_S,col=grey(.05,NULL)) # abline(v=nv_PSel.5.e2,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PL2),t(sensitivity_PL2),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Lasso2",ylim=rangeCPy_S,col=grey(.05,NULL)) # abline(v=nv_PL2,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PB),t(sensitivity_PB),type="l",xlab="cutoff",ylab="Sensitivity",main="Patterns_Select_Boost",ylim=rangeCPy_S,col=grey(.05,NULL)) # abline(v=nv_PB,col=grey(.05,NULL),lty=3) ## ----graphs3, cache= FALSE, fig.width=6, eval=FALSE--------------------------- # layout(matrix(1:6,nrow=2)) # matplot(t(test.seq_C),t(predictive_positive_value_C),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Cascade",ylim=rangeCPy_PPV,col=grey(.05,NULL)) # abline(v=nv_C,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PL),t(predictive_positive_value_PL),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Lasso",ylim=rangeCPy_PPV,col=grey(.05,NULL)) # abline(v=nv_PL,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PL2_W),t(predictive_positive_value_PL2_W),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Lasso2_W",ylim=rangeCPy_PPV,col=grey(.05,NULL)) # abline(v=nv_PL2_W,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PSel),t(predictive_positive_value_PSel),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Stability_Selection",ylim=rangeCPy_PPV,col=grey(.05,NULL)) # abline(v=nv_PSel,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PSel_W),t(predictive_positive_value_PSel_W),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Stability_Selection_W",ylim=rangeCPy_PPV,col=grey(.05,NULL)) # abline(v=nv_PSel_W,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PL2_tW),t(predictive_positive_value_PL2_tW),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Lasso2_wrongW",ylim=rangeCPy_PPV,col=grey(.05,NULL)) # abline(v=nv_PL2_tW,col=grey(.05,NULL),lty=3) ## ----graphs4, cache= FALSE, fig.width=6, eval=FALSE--------------------------- # layout(matrix(1:6,nrow=2)) # matplot(t(test.seq_PSel),t(predictive_positive_value_PSel),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Stability_Selection",ylim=rangeCPy_PPV,col=grey(.05,NULL)) # abline(v=nv_PSel,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PSel.5),t(predictive_positive_value_PSel.5),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Stability_Selection.5",ylim=rangeCPy_PPV,col=grey(.05,NULL)) # abline(v=nv_PSel.5,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PSel.e2),t(predictive_positive_value_PSel.e2),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Stability_Selection",ylim=rangeCPy_PPV,col=grey(.05,NULL)) # abline(v=nv_PSel,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PSel.5.e2),t(predictive_positive_value_PSel.5.e2),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Stability_Selection.5.e2",ylim=rangeCPy_PPV,col=grey(.05,NULL)) # abline(v=nv_PSel.5.e2,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PL2),t(predictive_positive_value_PL2),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Lasso2",ylim=rangeCPy_PPV,col=grey(.05,NULL)) # abline(v=nv_PL2,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PB),t(predictive_positive_value_PB),type="l",xlab="cutoff",ylab="Predictive Positive Value",main="Patterns_Select_Boost",ylim=rangeCPy_PPV,col=grey(.05,NULL)) # abline(v=nv_PB,col=grey(.05,NULL),lty=3) ## ----graphs5, cache= FALSE, fig.width=6, eval=FALSE--------------------------- # layout(matrix(1:6,nrow=2)) # matplot(t(test.seq_C),t(F_score_C),type="l",xlab="cutoff",ylab="Fscore",main="Cascade",ylim=rangeCPy_F,col=grey(.05,NULL)) # abline(v=nv_C,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PL),t(F_score_PL),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Lasso",ylim=rangeCPy_F,col=grey(.05,NULL)) # abline(v=nv_PL,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PL2_W),t(F_score_PL2_W),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Lasso2_W",ylim=rangeCPy_F,col=grey(.05,NULL)) # abline(v=nv_PL2_W,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PSel),t(F_score_PSel),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Stability_Selection",ylim=rangeCPy_F,col=grey(.05,NULL)) # abline(v=nv_PSel,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PSel_W),t(F_score_PSel_W),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Stability_Selection_W",ylim=rangeCPy_F,col=grey(.05,NULL)) # abline(v=nv_PSel_W,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PL2_tW),t(F_score_PL2_tW),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Lasso2_wrongW",ylim=rangeCPy_F,col=grey(.05,NULL)) # abline(v=nv_PL2_tW,col=grey(.05,NULL),lty=3) ## ----graphs6, cache= FALSE, fig.width=6, eval=FALSE--------------------------- # layout(matrix(1:6,nrow=2)) # matplot(t(test.seq_PSel),t(F_score_PSel),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Stability_Selection",ylim=rangeCPy_F,col=grey(.25,NULL)) # abline(v=nv_PSel,lty=3,col=grey(.05,NULL)) # matplot(t(test.seq_PSel.5),t(F_score_PSel.5),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Stability_Selection.5",ylim=rangeCPy_F,col=grey(.25,NULL)) # abline(v=nv_PSel.5,lty=3,col=grey(.05,NULL)) # matplot(t(test.seq_PSel.e2),t(F_score_PSel.e2),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Stability_Selection.e2",ylim=rangeCPy_F,col=grey(.25,NULL)) # abline(v=nv_PSel.e2,lty=3,col=grey(.05,NULL)) # matplot(t(test.seq_PSel.5.e2),t(F_score_PSel.5.e2),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Stability_Selection.5.e2",ylim=rangeCPy_F,col=grey(.25,NULL)) # abline(v=nv_PSel.5.e2,lty=3,col=grey(.05,NULL)) # matplot(t(test.seq_PL2),t(F_score_PL2),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Lasso2",ylim=rangeCPy_F,col=grey(.05,NULL)) # abline(v=nv_PL2,col=grey(.05,NULL),lty=3) # matplot(t(test.seq_PB),t(F_score_PB),type="l",xlab="cutoff",ylab="Fscore",main="Patterns_Select_Boost",ylim=rangeCPy_F,col=grey(.05,NULL)) # abline(v=nv_PB,col=grey(.05,NULL),lty=3) ## ----code, cache= FALSE, eval=FALSE------------------------------------------- # library(Cascade) # if(exists("M")){rm(M)} # BBB=1 # NNN=100 # { # sensitivity_C<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_PL<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_PL2<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_PL2_W<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_PL2_tW<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_PSel<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_PSel_W<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_PSel.5<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_PSel.e2<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_PSel.5.e2<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_robust<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_PB<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_PB_095_075<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_PB_075_075<-matrix(rep(NA,200*NNN),nrow=NNN) # sensitivity_PB_W<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_C<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_PL<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_PL2<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_PL2_W<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_PL2_tW<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_PSel<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_PSel_W<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_PSel.5<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_PSel.e2<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_PSel.5.e2<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_robust<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_PB<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_PB_095_075<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_PB_075_075<-matrix(rep(NA,200*NNN),nrow=NNN) # predictive_positive_value_PB_W<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_C<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_PL<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_PL2<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_PL2_W<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_PL2_tW<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_PSel<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_PSel_W<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_PSel.5<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_PSel.e2<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_PSel.5.e2<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_robust<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_PB<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_PB_095_075<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_PB_075_075<-matrix(rep(NA,200*NNN),nrow=NNN) # F_score_PB_W<-matrix(rep(NA,200*NNN),nrow=NNN) # #Here are the cutoff level tested # test.seq_C<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_PL<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_PL2<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_PL2_W<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_PL2_tW<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_PSel<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_PSel_W<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_PSel.5<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_PSel.e2<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_PSel.5.e2<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_robust<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_PB<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_PB_095_075<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_PB_075_075<-matrix(rep(NA,200*NNN),nrow=NNN) # test.seq_PB_W<-matrix(rep(NA,200*NNN),nrow=NNN) # nv_C<-rep(0,NNN) # nv_PL<-rep(0,NNN) # nv_PL2<-rep(0,NNN) # nv_PL2_W<-rep(0,NNN) # nv_PL2_tW<-rep(0,NNN) # nv_PSel<-rep(0,NNN) # nv_PSel_W<-rep(0,NNN) # nv_PSel.5<-rep(0,NNN) # nv_PSel.e2<-rep(0,NNN) # nv_PSel.5.e2<-rep(0,NNN) # nv_robust<-rep(0,NNN) # nv_PB<-rep(0,NNN) # nv_PB_095_075<-rep(0,NNN) # nv_PB_075_075<-rep(0,NNN) # nv_PB_W<-rep(0,NNN) # # #We change F matrices # T<-4 # F<-array(0,c(T-1,T-1,T*(T-1)/2)) # # for(i in 1:(T*(T-1)/2)){diag(F[,,i])<-1} # F[,,2]<-F[,,2]*0.2 # F[2,1,2]<-1 # F[3,2,2]<-1 # F[,,4]<-F[,,2]*0.3 # F[3,1,4]<-1 # F[,,5]<-F[,,2] # # TFshape=Patterns::CascadeFshape(ngrp = 4,sqF = 4) # TF=Patterns::CascadeFinit(ngrp = 4,sqF = 4) # # TF[,,1] # TF[,,2]<-cbind(rbind(rep(0,3),F[,,1]),rep(0,4)) # TF[,,3]<-cbind(rbind(rep(0,3),F[,,2]),rep(0,4)) # TF[,,4]<-cbind(rbind(rep(0,3),F[,,3]),rep(0,4)) # # TF[,,5] # # TF[,,6] # TF[,,7]<-cbind(rbind(rep(0,3),F[,,4]),rep(0,4)) # TF[,,8]<-cbind(rbind(rep(0,3),F[,,5]),rep(0,4)) # # TF[,,9] # # TF[,,10] # # TF[,,11] # TF[,,12]<-cbind(rbind(rep(0,3),F[,,6]),rep(0,4)) # # TF[,,13] # # TF[,,14] # # TF[,,15] # # TF[,,16] # } # # #We set the seed to make the results reproducible # set.seed(1) # for(iii in BBB:NNN){ # #We create a random scale free network # if(!file.exists(paste(paste("Net",iii,sep="_"),".RData",sep=""))){ # Net<-Cascade::network_random( # nb=100, # time_label=rep(1:4,each=25), # exp=1, # init=1, # regul=round(rexp(100,1))+1, # min_expr=0.1, # max_expr=2, # casc.level=0.4 # ) # Net@F<-F # assign(paste("Net",iii,sep="_"),Net);rm(Net) # save(list=paste("Net",iii,sep="_"),file=paste(paste("Net",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net",iii,sep="_"),".RData",sep="")) # } # # #We simulate gene expression according to the network Net # if(!file.exists(paste(paste("M",iii,sep="_"),".RData",sep=""))){ # assign(paste("M",iii,sep="_"),Cascade::gene_expr_simulation( # network=get(paste("Net",iii,sep="_")), # time_label=rep(1:4,each=25), # subject=5, # level_peak=200)) # save(list=paste("M",iii,sep="_"),file=paste(paste("M",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("M",iii,sep="_"),".RData",sep="")) # } # } # # #We infer the new network # for(iii in BBB:NNN){ # if(!file.exists(paste(paste("Net_inf_C",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_C",iii,sep="_"),Cascade::inference(get(paste("M",iii,sep="_")))) # save(list=paste("Net_inf_C",iii,sep="_"),file=paste(paste("Net_inf_C",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_C",iii,sep="_"),".RData",sep="")) # } # } # for(iii in BBB:NNN){ # if(!file.exists(paste(paste("Net_inf_PL",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_PL",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="LASSO")) # save(list=paste("Net_inf_PL",iii,sep="_"),file=paste(paste("Net_inf_PL",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_PL",iii,sep="_"),".RData",sep="")) # } # } # for(iii in BBB:NNN){ # if(!file.exists(paste(paste("Net_inf_PL2",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_PL2",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="LASSO2")) # save(list=paste("Net_inf_PL2",iii,sep="_"),file=paste(paste("Net_inf_PL2",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_PL2",iii,sep="_"),".RData",sep="")) # } # } # for(iii in BBB:NNN){ # Temp_Weights_Net<-slot(get(paste("Net",iii,sep="_")),"network") # Temp_Weights_Net[Temp_Weights_Net!=0]=.1 # Temp_Weights_Net[Temp_Weights_Net==0]=1000 # assign(paste("Weights_Net",iii,sep="_"),Temp_Weights_Net) # if(!file.exists(paste(paste("Net_inf_PL2_W",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_PL2_W",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="LASSO2",priors=get(paste("Weights_Net",iii,sep="_")))) # save(list=c(paste("Net_inf_PL2_W",iii,sep="_"),paste("Weights_Net",iii,sep="_")),file=paste(paste("Net_inf_PL2_W",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_PL2_W",iii,sep="_"),".RData",sep="")) # } # rm(Temp_Weights_Net) # } # for(iii in BBB:NNN){ # Temp_Weights_Net<-slot(get(paste("Net",iii,sep="_")),"network") # Temp_Weights_Net[Temp_Weights_Net!=0]=.1 # Temp_Weights_Net[Temp_Weights_Net==0]=1000 # assign(paste("Weights_Net",iii,sep="_"),Temp_Weights_Net) # if(!file.exists(paste(paste("Net_inf_PL2_tW",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_PL2_tW",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="LASSO2",priors=t(get(paste("Weights_Net",iii,sep="_"))))) # save(list=c(paste("Net_inf_PL2_tW",iii,sep="_"),paste("Weights_Net",iii,sep="_")),file=paste(paste("Net_inf_PL2_tW",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_PL2_tW",iii,sep="_"),".RData",sep="")) # } # rm(Temp_Weights_Net) # } # for(iii in BBB:NNN){ # if(!file.exists(paste(paste("Net_inf_PSel",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_PSel",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="stability.c060",use.Gram=FALSE,error.stabsel=0.05,pi_thr.stabsel=0.9,mc.cores=1,intercept.stabpath=FALSE)) # save(list=paste("Net_inf_PSel",iii,sep="_"),file=paste(paste("Net_inf_PSel",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_PSel",iii,sep="_"),".RData",sep="")) # } # } # for(iii in BBB:NNN){ # Temp_Weights_Net<-slot(get(paste("Net",iii,sep="_")),"network") # Temp_Weights_Net[Temp_Weights_Net!=0]=.1 # Temp_Weights_Net[Temp_Weights_Net==0]=1000 # assign(paste("Weights_Net",iii,sep="_"),Temp_Weights_Net) # if(!file.exists(paste(paste("Net_inf_PSel_W",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_PSel_W",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="stability.c060.weighted",use.Gram=FALSE,error.stabsel=0.05,pi_thr.stabsel=0.9,mc.cores=2,intercept.stabpath=FALSE,priors=get(paste("Weights_Net",iii,sep="_")))) # save(list=c(paste("Net_inf_PSel_W",iii,sep="_"),paste("Weights_Net",iii,sep="_")),file=paste(paste("Net_inf_PSel_W",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_PSel_W",iii,sep="_"),".RData",sep="")) # } # } # for(iii in BBB:NNN){ # if(!file.exists(paste(paste("Net_inf_PSel.5",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_PSel.5",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="stability.c060",use.Gram=FALSE,error.stabsel=0.05,pi_thr.stabsel=0.51,mc.cores=1,intercept.stabpath=FALSE)) # save(list=paste("Net_inf_PSel.5",iii,sep="_"),file=paste(paste("Net_inf_PSel.5",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_PSel.5",iii,sep="_"),".RData",sep="")) # } # } # for(iii in BBB:NNN){ # if(!file.exists(paste(paste("Net_inf_PSel.e2",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_PSel.e2",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="stability.c060",use.Gram=FALSE,error.stabsel=0.2,pi_thr.stabsel=0.9,mc.cores=1,intercept.stabpath=FALSE)) # save(list=paste("Net_inf_PSel.e2",iii,sep="_"),file=paste(paste("Net_inf_PSel.e2",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_PSel.e2",iii,sep="_"),".RData",sep="")) # } # } # for(iii in BBB:NNN){ # if(!file.exists(paste(paste("Net_inf_PSel.5.e2",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_PSel.5.e2",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="stability.c060",use.Gram=FALSE,error.stabsel=0.2,pi_thr.stabsel=0.51,mc.cores=1,intercept.stabpath=FALSE)) # save(list=paste("Net_inf_PSel.5.e2",iii,sep="_"),file=paste(paste("Net_inf_PSel.5.e2",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_PSel.5.e2",iii,sep="_"),".RData",sep="")) # } # } # for(iii in BBB:NNN){ # if(!file.exists(paste(paste("Net_inf_robust",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_robust",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="robust")) # save(list=paste("Net_inf_robust",iii,sep="_"),file=paste(paste("Net_inf_robust",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_robust",iii,sep="_"),".RData",sep="")) # } # } # # # vmf.lme<-function (x, tol = 1e-07) # # { # # dm <- dim(x) # # p <- dm[2] # # n <- dm[1] # # Apk <- function(p, k) besselI(k, p/2, expon.scaled = TRUE)/besselI(k, p/2 - 1, expon.scaled = TRUE) # # m1 <- Rfast::colsums(x) # # R <- sqrt(sum(m1^2))/n # # m <- m1/n/R # # k1 <- R * (p - R^2)/(1 - R^2) # # if (k1 < 1e+05) { # # apk <- Apk(p, k1) # # k2 <- k1 - (apk - R)/(1 - apk^2 - (p - 1)/k1 * apk) # # while (abs(k2 - k1) > tol) { # # k1 <- k2 # # if (k1 < 1e+05) {apk <- Apk(p, k1)} else {k2<-k1;break} # # k2 <- k1 - (apk - R)/(1 - apk^2 - (p - 1)/k1 * apk) # # } # # k <- k2 # # } # # else k <- k1 # # loglik <- n * (p/2 - 1) * log(k) - 0.5 * n * p * log(2 * pi) - n * (log(besselI(k, p/2 - 1, expon.scaled = TRUE)) + k) + k * n * R # # list(loglik = loglik, mu = m, kappa = k) # # } # # for(iii in BBB:NNN){ # if(!file.exists(paste(paste("Net_inf_PB",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_PB",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="selectboost.weighted")) # save(list=paste("Net_inf_PB",iii,sep="_"),file=paste(paste("Net_inf_PB",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_PB",iii,sep="_"),".RData",sep="")) # } # } # #Default values # #,steps.seq=.95 # #,limselect=.75 # for(iii in BBB:NNN){ # if(!file.exists(paste(paste("Net_inf_PB_c095_limsel075",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_PB_c095_limsel075",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="selectboost.weighted" # ,steps.seq=.95 # ,limselect=.75 # )) # save(list=paste("Net_inf_PB_c095_limsel075",iii,sep="_"),file=paste(paste("Net_inf_PB_c095_limsel075",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_PB_c095_limsel075",iii,sep="_"),".RData",sep="")) # } # } # for(iii in BBB:NNN){ # if(!file.exists(paste(paste("Net_inf_PB_c075_limsel075",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_PB_c075_limsel075",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="selectboost.weighted" # ,steps.seq=.75 # ,limselect=.75 # )) # save(list=paste("Net_inf_PB_c075_limsel075",iii,sep="_"),file=paste(paste("Net_inf_PB_c075_limsel075",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_PB_c075_limsel075",iii,sep="_"),".RData",sep="")) # } # } # for(iii in BBB:NNN){ # Temp_Weights_Net<-slot(get(paste("Net",iii,sep="_")),"network") # Temp_Weights_Net[Temp_Weights_Net!=0]=.1 # Temp_Weights_Net[Temp_Weights_Net==0]=1000 # assign(paste("Weights_Net",iii,sep="_"),Temp_Weights_Net) # if(!file.exists(paste(paste("Net_inf_PB_W",iii,sep="_"),".RData",sep=""))){ # assign(paste("Net_inf_PB_W",iii,sep="_"),Patterns::inference(get(paste("M",iii,sep="_")),Finit=TF,Fshape=TFshape,fitfun="selectboost.weighted",priors=get(paste("Weights_Net",iii,sep="_")))) # save(list=paste("Net_inf_PB_W",iii,sep="_"),file=paste(paste("Net_inf_PB_W",iii,sep="_"),".RData",sep="")) # } else { # load(file=paste(paste("Net_inf_PB_W",iii,sep="_"),".RData",sep="")) # } # } # # # ,fitfun="stability.c060.weighted" # # ,fitfun="LASSO2.weighted" # # #Comparing true and inferred networks # #Here are the cutoff level tested # for(iii in BBB:NNN){ # test.seq_C[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_C",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_PL[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_PL",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_PL2[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_PL2",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_PL2_W[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_PL2_W",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_PL2_tW[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_PL2_tW",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_PSel[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_PSel",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_PSel_W[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_PSel_W",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_PSel.5[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_PSel.5",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_PSel.e2[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_PSel.e2",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_PSel.5.e2[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_PSel.5.e2",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_robust[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_robust",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_PB[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_PB",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_PB_095_075[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_PB_c095_limsel075",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_PB_075_075[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_PB_c075_limsel075",iii,sep="_")),"network")*0.9)),length.out=200) # test.seq_PB_W[iii,]<-seq(0,max(abs(slot(get(paste("Net_inf_PB_W",iii,sep="_")),"network")*0.9)),length.out=200) # } # # for(iii in BBB:NNN){ # cat(iii,"\n") # u<-0 # cat("Net_inf_C") # for(i in test.seq_C[iii,]){ # u<-u+1 # sensitivity_C[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_C",iii,sep="_")),i)[1] # predictive_positive_value_C[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_C",iii,sep="_")),i)[2] # F_score_C[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_C",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_PL") # for(i in test.seq_PL[iii,]){ # u<-u+1 # sensitivity_PL[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PL",iii,sep="_")),i)[1] # predictive_positive_value_PL[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PL",iii,sep="_")),i)[2] # F_score_PL[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PL",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_PL2") # for(i in test.seq_PL2[iii,]){ # u<-u+1 # sensitivity_PL2[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PL2",iii,sep="_")),i)[1] # predictive_positive_value_PL2[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PL2",iii,sep="_")),i)[2] # F_score_PL2[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PL2",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_PL2_W") # for(i in test.seq_PL2_W[iii,]){ # u<-u+1 # sensitivity_PL2_W[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PL2_W",iii,sep="_")),i)[1] # predictive_positive_value_PL2_W[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PL2_W",iii,sep="_")),i)[2] # F_score_PL2_W[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PL2_W",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_PL2_tW") # for(i in test.seq_PL2_tW[iii,]){ # u<-u+1 # sensitivity_PL2_tW[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PL2_tW",iii,sep="_")),i)[1] # predictive_positive_value_PL2_tW[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PL2_tW",iii,sep="_")),i)[2] # F_score_PL2_tW[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PL2_tW",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_PSel") # for(i in test.seq_PSel[iii,]){ # u<-u+1 # sensitivity_PSel[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel",iii,sep="_")),i)[1] # predictive_positive_value_PSel[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel",iii,sep="_")),i)[2] # F_score_PSel[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_PSel_W") # for(i in test.seq_PSel_W[iii,]){ # u<-u+1 # sensitivity_PSel_W[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel_W",iii,sep="_")),i)[1] # predictive_positive_value_PSel_W[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel_W",iii,sep="_")),i)[2] # F_score_PSel_W[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel_W",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_PSel.5") # for(i in test.seq_PSel.5[iii,]){ # u<-u+1 # sensitivity_PSel.5[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel.5",iii,sep="_")),i)[1] # predictive_positive_value_PSel.5[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel.5",iii,sep="_")),i)[2] # F_score_PSel.5[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel.5",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_PSel.e2") # for(i in test.seq_PSel.e2[iii,]){ # u<-u+1 # sensitivity_PSel.e2[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel.e2",iii,sep="_")),i)[1] # predictive_positive_value_PSel.e2[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel.e2",iii,sep="_")),i)[2] # F_score_PSel.e2[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel.e2",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_PSel.5.e2") # for(i in test.seq_PSel.5.e2[iii,]){ # u<-u+1 # sensitivity_PSel.5.e2[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel.5.e2",iii,sep="_")),i)[1] # predictive_positive_value_PSel.5.e2[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel.5.e2",iii,sep="_")),i)[2] # F_score_PSel.5.e2[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PSel.5.e2",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_robust") # for(i in test.seq_robust[iii,]){ # u<-u+1 # sensitivity_robust[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_robust",iii,sep="_")),i)[1] # predictive_positive_value_robust[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_robust",iii,sep="_")),i)[2] # F_score_robust[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_robust",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_PB") # for(i in test.seq_PB[iii,]){ # u<-u+1 # sensitivity_PB[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PB",iii,sep="_")),i)[1] # predictive_positive_value_PB[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PB",iii,sep="_")),i)[2] # F_score_PB[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PB",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_PB_095_075") # for(i in test.seq_PB_095_075[iii,]){ # u<-u+1 # sensitivity_PB_095_075[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PB_c095_limsel075",iii,sep="_")),i)[1] # predictive_positive_value_PB_095_075[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PB_c095_limsel075",iii,sep="_")),i)[2] # F_score_PB_095_075[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PB_c095_limsel075",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_PB_075_075") # for(i in test.seq_PB[iii,]){ # u<-u+1 # sensitivity_PB_075_075[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PB_c075_limsel075",iii,sep="_")),i)[1] # predictive_positive_value_PB_075_075[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PB_c075_limsel075",iii,sep="_")),i)[2] # F_score_PB_075_075[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PB_c075_limsel075",iii,sep="_")),i)[3] # } # u<-0 # cat("Net_inf_PB_W\n") # for(i in test.seq_PB_W[iii,]){ # u<-u+1 # sensitivity_PB_W[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PB_W",iii,sep="_")),i)[1] # predictive_positive_value_PB_W[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PB_W",iii,sep="_")),i)[2] # F_score_PB_W[iii,u]<-Cascade::compare(get(paste("Net",iii,sep="_")),get(paste("Net_inf_PB_W",iii,sep="_")),i)[3] # } # #Corresponding Fscore evolution # nv_C[iii]=test.seq_C[iii,which.max(F_score_C[iii,])] # nv_PL[iii]=test.seq_PL[iii,which.max(F_score_PL[iii,])] # nv_PL2[iii]=test.seq_PL2[iii,which.max(F_score_PL2[iii,])] # nv_PL2_W[iii]=test.seq_PL2[iii,which.max(F_score_PL2_W[iii,])] # nv_PL2_tW[iii]=test.seq_PL2[iii,which.max(F_score_PL2_tW[iii,])] # nv_PSel[iii]=test.seq_PSel[iii,which.max(F_score_PSel[iii,])] # nv_PSel_W[iii]=test.seq_PSel[iii,which.max(F_score_PSel_W[iii,])] # nv_PSel.5[iii]=test.seq_PSel.5[iii,which.max(F_score_PSel.5[iii,])] # nv_PSel.e2[iii]=test.seq_PSel.e2[iii,which.max(F_score_PSel.e2[iii,])] # nv_PSel.5.e2[iii]=test.seq_PSel.5.e2[iii,which.max(F_score_PSel.5.e2[iii,])] # nv_robust[iii]=test.seq_robust[iii,which.max(F_score_robust[iii,])] # nv_PB[iii]=test.seq_PB[iii,which.max(F_score_PB[iii,])] # nv_PB_095_075[iii]=test.seq_PB_095_075[iii,which.max(F_score_PB_095_075[iii,])] # nv_PB_075_075[iii]=test.seq_PB_075_075[iii,which.max(F_score_PB_075_075[iii,])] # nv_PB_W[iii]=test.seq_PB_W[iii,which.max(F_score_PB_W[iii,])] # } # # save( # sensitivity_C, # sensitivity_PL, # sensitivity_PL2, # sensitivity_PL2_W, # sensitivity_PL2_tW, # sensitivity_PSel, # sensitivity_PSel_W, # sensitivity_PSel.5, # sensitivity_PSel.e2, # sensitivity_PSel.5.e2, # sensitivity_robust, # sensitivity_PB, # sensitivity_PB_095_075, # sensitivity_PB_075_075, # sensitivity_PB_W, # predictive_positive_value_C, # predictive_positive_value_PL, # predictive_positive_value_PL2, # predictive_positive_value_PL2_W, # predictive_positive_value_PL2_tW, # predictive_positive_value_PSel, # predictive_positive_value_PSel_W, # predictive_positive_value_PSel.5, # predictive_positive_value_PSel.e2, # predictive_positive_value_PSel.5.e2, # predictive_positive_value_robust, # predictive_positive_value_PB, # predictive_positive_value_PB_095_075, # predictive_positive_value_PB_075_075, # predictive_positive_value_PB_W, # F_score_C, # F_score_PL, # F_score_PL2, # F_score_PL2_W, # F_score_PL2_tW, # F_score_PSel, # F_score_PSel_W, # F_score_PSel.5, # F_score_PSel.e2, # F_score_PSel.5.e2, # F_score_robust, # F_score_PB, # F_score_PB_095_075, # F_score_PB_075_075, # F_score_PB_W, # #Here are the cutoff level tested # test.seq_C, # test.seq_PL, # test.seq_PL2, # test.seq_PL2_W, # test.seq_PL2_tW, # test.seq_PSel, # test.seq_PSel_W, # test.seq_PSel.5, # test.seq_PSel.e2, # test.seq_PSel.5.e2, # test.seq_robust, # test.seq_PB, # test.seq_PB_095_075, # test.seq_PB_075_075, # test.seq_PB_W, # nv_C, # nv_PL, # nv_PL2, # nv_PL2_W, # nv_PL2_tW, # nv_PSel, # nv_PSel_W, # nv_PSel.5, # nv_PSel.e2, # nv_PSel.5.e2, # nv_robust, # nv_PB, # nv_PB_095_075, # nv_PB_075_075, # nv_PB_W,file="results_simuls_reverse_engineering_v3.RData", # compress = "xz")