## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval = FALSE------------------------------------------------------------- # library(SpaCOAP) ## ----eval = FALSE------------------------------------------------------------- # width <- 20; height <- 30 # n <- width*height # p=500 # q = 5; d <- 40; k <- 3; r <- 3 # bandwidth <- 1 # rho<- c(8,0.6) # sigma2_eps=1 # datlist <- gendata_spacoap(seed=1, width=width, height = height, # p=p, q=q, d=d, k=k, rank0 = r, bandwidth=1, # eta0 = 0.5, rho=rho, sigma2_eps=sigma2_eps) # X_count <- datlist$X; H <- datlist$H; Z <- datlist$Z # F0 <- datlist$F0; B0 <- datlist$B0 # bbeta0 <- datlist$bbeta0; alpha0 <- datlist$alpha0 # Adj_sp <- SpaCOAP:::getneighbor_weightmat(datlist$pos, 1.1, bandwidth) ## ----eval = FALSE------------------------------------------------------------- # reslist <- SpaCOAP(X_count,Adj_sp, H, Z = Z, rank_use = r, q=q) # str(reslist) ## ----eval = FALSE------------------------------------------------------------- # library(ggplot2) # dat_iter <- data.frame(iter=1:length(reslist$ELBO_seq[-1]), ELBO=reslist$ELBO_seq[-1]) # ggplot(data=dat_iter, aes(x=iter, y=ELBO)) + geom_line() + geom_point() + theme_bw(base_size = 20) # ## ----eval = FALSE------------------------------------------------------------- # norm1_vec <- function(x) mean(abs(x)) # trace_statistic_fun <- function(H, H0){ # # tr_fun <- function(x) sum(diag(x)) # mat1 <- t(H0) %*% H %*% qr.solve(t(H) %*% H) %*% t(H) %*% H0 # # tr_fun(mat1) / tr_fun(t(H0) %*% H0) # # } ## ----eval = FALSE------------------------------------------------------------- # metricList <- list() # metricList$SpaCOAP <- list() # metricList$SpaCOAP$F_tr <- trace_statistic_fun(reslist$F, F0) # metricList$SpaCOAP$B_tr <- trace_statistic_fun(reslist$B, B0) # metricList$SpaCOAP$alpha_norm1 <- norm1_vec(reslist$alpha- alpha0)/mean(abs(alpha0)) # metricList$SpaCOAP$beta_norm1<- norm1_vec(reslist$bbeta- bbeta0)/mean(abs(bbeta0)) # metricList$SpaCOAP$time <- reslist$time_use ## ----eval = FALSE------------------------------------------------------------- # library(COAP) # tic <- proc.time() # res_coap <- RR_COAP(X_count, Z = cbind(Z, H), rank_use= k+r, q=5, epsELBO = 1e-9) # toc <- proc.time() # time_coap <- toc[3] - tic[3] # metricList$COAP$F_tr <- trace_statistic_fun(res_coap$H, F0) # metricList$COAP$B_tr <- trace_statistic_fun(res_coap$B, B0) # alpha_coap <- res_coap$bbeta[,1:k] # beta_coap <- res_coap$bbeta[,(k+1):(k+d)] # metricList$COAP$alpha_norm1 <- norm1_vec(alpha_coap- alpha0)/mean(abs(alpha0)) # metricList$COAP$beta_norm1 <- norm1_vec(beta_coap- bbeta0)/mean(abs(bbeta0)) # metricList$COAP$time <- time_coap ## ----eval = FALSE------------------------------------------------------------- # # PLNPCA_run <- function(X_count, covariates, q, Offset=rep(1, nrow(X_count)), workers=NULL, # maxIter=10000,ftol_rel=1e-8, xtol_rel= 1e-4){ # require(PLNmodels) # if(!is.null(workers)){ # future::plan("multisession", workers = workers) # } # if(!is.character(Offset)){ # dat_plnpca <- prepare_data(X_count, covariates) # dat_plnpca$Offset <- Offset # }else{ # dat_plnpca <- prepare_data(X_count, covariates, offset = Offset) # } # # d <- ncol(covariates) # # offset(log(Offset))+ # formu <- paste0("Abundance ~ 1 + offset(log(Offset))+",paste(paste0("V",1:d), collapse = '+')) # control_use <- list(maxeval=maxIter, ftol_rel=ftol_rel, xtol_rel= ftol_rel) # control_main <- PLNPCA_param( # backend = "nlopt", # trace = 1, # config_optim = control_use, # inception = NULL # ) # # myPCA <- PLNPCA(as.formula(formu), data = dat_plnpca, ranks = q, control = control_main) # # myPCA1 <- getBestModel(myPCA) # myPCA1$scores # # res_plnpca <- list(PCs= myPCA1$scores, bbeta= myPCA1$model_par$B, # loadings=myPCA1$model_par$C) # # return(res_plnpca) # } # # tic <- proc.time() # res_plnpca <- PLNPCA_run(X_count, cbind(Z[,-1],H), q=q) # toc <- proc.time() # time_plnpca <- toc[3] - tic[3] # # metricList$PLNPCA$F_tr <- trace_statistic_fun(res_plnpca$PCs, F0) # metricList$PLNPCA$B_tr <- trace_statistic_fun(res_plnpca$loadings, B0) # alpha_plnpca <- t(res_plnpca$bbeta[1:k,]) # beta_plnpca <- t(res_plnpca$bbeta[(k+1):(k+d),]) # metricList$PLNPCA$alpha_norm1 <- norm1_vec(alpha_plnpca- alpha0)/mean(abs(alpha0)) # metricList$PLNPCA$beta_norm1 <- norm1_vec(beta_plnpca- bbeta0)/mean(abs(bbeta0)) # metricList$PLNPCA$time <- time_plnpca ## ----eval = FALSE------------------------------------------------------------- # ## MRRR # ## Compare with MRRR # mrrr_run <- function(Y, X, rank0, q=NULL, family=list(poisson()), # familygroup=rep(1,ncol(Y)), epsilon = 1e-4, sv.tol = 1e-2, # maxIter = 2000, trace=TRUE, truncflag=FALSE, trunc=500){ # # epsilon = 1e-4; sv.tol = 1e-2; maxIter = 30; trace=TRUE # # Y <- X_count; X <- cbind(Z, H); rank0 = r + ncol(Z) # # require(rrpack) # # n <- nrow(Y); p <- ncol(Y) # # if(!is.null(q)){ # rank0 <- rank0+q # X <- cbind(X, diag(n)) # } # if(truncflag){ # ## Trunction # Y[Y>trunc] <- trunc # # } # # svdX0d1 <- svd(X)$d[1] # init1 = list(kappaC0 = svdX0d1 * 5) # offset = NULL # control = list(epsilon = epsilon, sv.tol = sv.tol, maxit = maxIter, # trace = trace, gammaC0 = 1.1, plot.cv = TRUE, # conv.obj = TRUE) # fit.mrrr <- mrrr(Y=Y, X=X[,-1], family = family, familygroup = familygroup, # penstr = list(penaltySVD = "rankCon", lambdaSVD = 1), # control = control, init = init1, maxrank = rank0) # # return(fit.mrrr) # } # tic <- proc.time() # res_mrrr <- mrrr_run(X_count, cbind(Z,H), r+ncol(Z), q=q, truncflag= TRUE, trunc=1e4) # toc <- proc.time() # time_mrrr <- toc[3] - tic[3] # ## ----eval = FALSE------------------------------------------------------------- # hbbeta_mrrr <-t(res_mrrr$coef[1:ncol(cbind(Z,H)), ]) # Theta_hb <- (res_mrrr$coef[(ncol(cbind(Z,H))+1): (nrow(cbind(Z,H))+ncol(cbind(Z,H))), ]) # svdTheta <- svd(Theta_hb, nu=q, nv=q) # metricList$MRRR$F_tr <- trace_statistic_fun(svdTheta$u, F0) # metricList$MRRR$B_tr <- trace_statistic_fun(svdTheta$v, B0) # alpha_mrrr <- hbbeta_mrrr[,1:k] # beta_mrrr <- hbbeta_mrrr[,(k+1):(k+d)] # metricList$MRRR$alpha_norm1 <- norm1_vec(alpha_mrrr- alpha0)/mean(abs(alpha0)) # metricList$MRRR$beta_norm1 <- norm1_vec(beta_mrrr- bbeta0)/mean(abs(bbeta0)) # metricList$MRRR$time <- time_mrrr ## ----eval =FALSE-------------------------------------------------------------- # ## FAST # fast_run <- function(X_count, Adj_sp, q, verbose=TRUE, epsELBO=1e-8){ # require(ProFAST) # # reslist <- FAST_run(XList = list(X_count), # AdjList = list(Adj_sp), q = q, fit.model = 'poisson', # verbose=verbose, epsLogLik=epsELBO) # reslist$hV <- reslist$hV[[1]] # return(reslist) # } # tic <- proc.time() # res_fast <- fast_run(X_count, Adj_sp, q=q, verbose=TRUE, epsELBO=1e-8) # toc <- proc.time() # time_fast <- toc[3] - tic[3] # metricList$FAST$F_tr <- trace_statistic_fun(res_fast$hV, F0) # metricList$FAST$B_tr <- trace_statistic_fun(res_fast$W, B0) # metricList$FAST$time <- time_fast # ## ----eval = FALSE------------------------------------------------------------- # list2vec <- function(xlist){ # nn <- length(xlist) # me <- rep(NA, nn) # idx_noNA <- which(sapply(xlist, function(x) !is.null(x))) # for(r in idx_noNA) me[r] <- xlist[[r]] # return(me) # } # # dat_metric <- data.frame(Tr_F = sapply(metricList, function(x) x$F_tr), # Tr_B = sapply(metricList, function(x) x$B_tr), # err_alpha =list2vec(lapply(metricList, function(x) x$alpha_norm1)), # err_beta = list2vec(lapply(metricList, function(x) x$beta_norm1)), # time = sapply(metricList, function(x) x$time), # Method = names(metricList)) # dat_metric$Method <- factor(dat_metric$Method, levels=dat_metric$Method) ## ----eval = FALSE, fig.width=9, fig.height=6---------------------------------- # library(cowplot) # p1 <- ggplot(data=subset(dat_metric, !is.na(Tr_B)), aes(x= Method, y=Tr_B, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL) + theme_bw(base_size = 16) # p2 <- ggplot(data=subset(dat_metric, !is.na(Tr_F)), aes(x= Method, y=Tr_F, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL)+ theme_bw(base_size = 16) # p3 <- ggplot(data=subset(dat_metric, !is.na(err_alpha)), aes(x= Method, y=err_alpha, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL)+ theme_bw(base_size = 16) # p4 <- ggplot(data=subset(dat_metric, !is.na(err_beta)), aes(x= Method, y=err_beta, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL)+ theme_bw(base_size = 16) # plot_grid(p1,p2,p3, p4, nrow=2, ncol=2) ## ----eval = FALSE------------------------------------------------------------- # # res1 <- chooseParams(X_count, Adj_sp, H, Z, verbose=FALSE) # # print(c(q_true=q, q_est=res1['hq'])) # print(c(r_true=r, r_est=res1['hr'])) ## ----------------------------------------------------------------------------- sessionInfo()