## ----eval=FALSE--------------------------------------------------------------- # d = Simdata # Z = d$Z # True Disease Status # S = d$S # Risk Score # phi = 0.1 #10% of patients taking viral load test # TGST( Z, S, phi, method="nonpar") ## ----eval=FALSE--------------------------------------------------------------- # d = Simdata # Z = d$Z # True Disease Status # S = d$S # Risk Score # Check.exp.tilt( Z, S) ## ----eval=FALSE--------------------------------------------------------------- # data = Simdata # Z = d$Z # True Disease Status # S = d$S # Risk Score # phi = 0.1 #10% of patients taking viral load test # Obj = TVLT(Z, S, phi, method="nonpar") # CV.TGST(Obj, lambda, K=10) ## ----eval=FALSE--------------------------------------------------------------- # d = Simdata # Z = d$Z # True Disease Status # S = d$S # Risk Score # phi = 0.1 #10% of patients taking viral load test # lambda = 0.5 # Obj = TGST(Z, S, phi, method="nonpar") # OptimalRule(Obj, lambda) ## ----eval=FALSE--------------------------------------------------------------- # d = Simdata # Z = d$Z # True Disease Status # S = d$S # Risk Score # phi = 0.1 #10% of patients taking viral load test # lambda = 0.5 # Obj = TGST(Z, S, phi, method="nonpar") # ROCAnalysis(Obj, plot=TRUE) ## ----eval=FALSE--------------------------------------------------------------- # d = Simdata # Z = d$Z # True Disease Status # S = d$S # Risk Score # phi = 0.1 #10\% of patients taking viral load test # nonpar.rules( Z, S, phi) ## ----eval=FALSE--------------------------------------------------------------- # d = Simdata # Z = d$Z # True Disease Status # S = d$S # Risk Score # phi = 0.1 #10\% of patients taking viral load test # rules = nonpar.rules( Z, S, phi) # nonpar.fnr.fpr(Z,S,rules[1,1],rules[1,2]) ## ----eval=FALSE--------------------------------------------------------------- # d = Simdata # Z = d$Z # True Disease Status # S = d$S # Risk Score # phi = 0.1 #10\% of patients taking viral load test # rules = nonpar.rules( Z, S, phi) # semipar.fnr.fpr(Z,S,rules[1,1],rules[1,2]) ## ----eval=FALSE--------------------------------------------------------------- # d = Simdata # Z = d$Z # True Disease Status # S = d$S # Risk Score # phi = 0.1 #10% of patients taking viral load test # rules = nonpar.rules( Z, S, phi) # cal.AUC(Z,S,rules[,1],rules[,2]) ## ----eval=FALSE--------------------------------------------------------------- # data(Simdata) # summary(Simdata) # plot(Simdata)