%\VignetteIndexEntry{TapeR: Flexible stem taper modelling}
\documentclass[english,11pt]{article}
%\documentclass[a4paper,11pt]{article}
\usepackage[a4paper]{geometry}
\geometry{verbose,tmargin=2cm,bmargin=2cm,lmargin=2cm,rmargin=2cm,footskip=1cm}

\usepackage{Sweave}
\usepackage{color}
\usepackage{graphicx}
\usepackage{booktabs}
\usepackage[authoryear]{natbib}
\usepackage{url}
\usepackage[utf8]{inputenc}

% \setlength{\oddsidemargin}{1cm}
% \setlength{\textwidth}{15cm}
% \setlength{\topmargin}{-2.2cm}
% \setlength{\textheight}{22cm}

% \usepackage{amssymb}
% \usepackage{amsmath}


%\usepackage{hyperref}
\usepackage[linkcolor=blue, bookmarks=true, citecolor=blue, colorlinks=true, linktocpage, a4paper]{hyperref}



\title{TapeR: Flexible stem taper modelling}
\author{Edgar Kublin\thanks{Forest Research Institute of
    Baden-W{\"u}rttemberg, Freiburg, Germany}, Johannes Breidenbach\thanks{Norwegian Institute of Bioeconomy Research, 1431 {\AA}s, Norway, job@nibio.no}}
%%\date{}
%\address{Norwegian Institute for Forest and Landscape}

\begin{document}
\SweaveOpts{concordance=TRUE}
\maketitle

%\tableofcontents


\section{Introduction}
The \texttt{TapeR} package implements methods described in \citep{kublin2013}.

If \texttt{R} is running, the \texttt{TapeR} package can be installed
by typing

<<eval=F, echo=TRUE>>=
install.packages("TapeR")
@
into the console\footnote{The character "\texttt{>}" is not
  part of the command. A working Internet connection is required.}.

The command
<<>>=
library(TapeR)
@
loads the package into the current workspace. We can get an overview of
the packages' contents by typing
<<eval=F, echo=T>>=
?TapeR
@

\section{Using the TapeR functions}

\subsection{Fitting a taper model}

A taper model can be fit to measured pairs of diameter and
corresponding heights. Typically, those data are recorded for regular stem sections but
the data can also be availabe at irregular distances. Important is for
the method implemented in this packages is
that the stem height is available too. We will load some example data
and fit a taper model. Note that in real applications, the dataset must be
considerably bigger in order to provide reliable taper models that are
valid over larger spatial extents. For example, the data set
\texttt{SK.par.lme} provides the taper model parameters
based on 338 Norway spruce trees in Germany.


<<fig=TRUE>>=

#load example data
data(DxHx.df)

#prepare the data (could be defined in the function directly)
Id = DxHx.df[,"Id"]
x = DxHx.df[,"Hx"]/DxHx.df[,"Ht"]#calculate relative heights
y = DxHx.df[,"Dx"]

#plot the example data
plot(x,y,pch=as.character(Id),xlab="Relative height (m)", ylab="Diameter (cm)")


#define the relative knot positions and order of splines

knt_x = c(0.0, 0.1, 0.75, 1.0) # B-Spline knots: fix effects
ord_x = 4 # ord = order (4 = cubic)
knt_z = c(0.0, 0.1, 1.0); ord_z = 4 # B-Spline knots: rnd effects

#fit the model
taper.model <- TapeR_FIT_LME.f(Id, x, y, knt_x, ord_x, knt_z, ord_z,
IdKOVb = "pdSymm")

#save model parameters for documentation or dissimination
#parameters can be load()-ed and used to predict the taper
#or volume using one or several measured dbh
spruce.taper.pars <- taper.model$par.lme
#save(spruce.taper.pars, file="spruce.taper.pars.rdata")##uncomment to save
@

\section{Example}
This is from the R-help of the exported TapeR-functions:
Let's take a look on the taper curve of the first tree in the example data set 
if it is only calibrated using the diameter measurement in 2m height.
<<Rhelp, echo=TRUE, eval=TRUE, fig=TRUE>>=
#example data
data(DxHx.df)

#taper curve parameters based on all measured trees
data(SK.par.lme)

#select data of first tree
Idi <- (DxHx.df[,"Id"] == unique(DxHx.df$Id)[1])
tree1 <- DxHx.df[Idi,]

## Predict the taper curve based on the diameter measurement in 2 m
## height and known height 
tc.tree1 <- E_DHx_HmDm_HT.f(Hx=1:tree1$Ht[1], Hm=tree1$Hx[3],
Dm=tree1$Dx[3], mHt = tree1$Ht[1], sHt = 0, par.lme = SK.par.lme) 

#plot the predicted taper curve
plot(tc.tree1$Hx, tc.tree1$DHx, type="l")
#lower CI
lines(tc.tree1$Hx, tc.tree1$CI_Mean[,1], lty=2)
#upper CI
lines(tc.tree1$Hx, tc.tree1$CI_Mean[,3], lty=2)
#lower prediction interval
lines(tc.tree1$Hx, tc.tree1$CI_Pred[,1], lty=3)
#upper prediction interval
lines(tc.tree1$Hx, tc.tree1$CI_Pred[,3], lty=3)
#add measured diameter
points(tree1$Hx[3], tree1$Dx[3], pch=3, col=2)
#add the observations
points(tree1$Hx, tree1$Dx)

## Add the population average taper curve (without calibration) to the
## plot (not of high practical interest but good to know how to get it).
Ht  = tree1$Ht[1]
Hx  = tree1$Hx
#get fixed-effects design matrix for the Splines
X = TapeR:::XZ_BSPLINE.f(x=Hx/Ht, knt = SK.par.lme$knt_x, ord = SK.par.lme$ord_x)
#Calculate population average taper curve
DHx_PA = X %*% SK.par.lme$b_fix
#add to plot
lines(tree1$Hx, DHx_PA, lwd=2, lty=4)
@

Let's see how intervals change, if some uncertainty in height is assumed.
<<Rhelp-p2, echo=TRUE, eval=TRUE, fig=TRUE>>=
## Let's see how CI's change if there's some uncertainty in the height
## measurement 
tc.tree1 <- E_DHx_HmDm_HT.f(Hx=1:tree1$Ht[1], Hm=tree1$Hx[3],
Dm=tree1$Dx[3], mHt = tree1$Ht[1], sHt = 1, par.lme = SK.par.lme) 

#plot the predicted taper curve
plot(tc.tree1$Hx, tc.tree1$DHx, type="l", xlab="Height (m)",
ylab="Diameter (cm)")
#lower CI
lines(tc.tree1$Hx, tc.tree1$CI_Mean[,1], lty=2)
#upper CI
lines(tc.tree1$Hx, tc.tree1$CI_Mean[,3], lty=2)
#lower prediction interval
lines(tc.tree1$Hx, tc.tree1$CI_Pred[,1], lty=3)
#upper prediction interval
lines(tc.tree1$Hx, tc.tree1$CI_Pred[,3], lty=3)
#add measured diameter
points(tree1$Hx[3], tree1$Dx[3], pch=3, col=2)
#add the observations
points(tree1$Hx, tree1$Dx)
@

Additionally, exact confidence intervals can be calculated:
<<RhelpExactCI, echo=TRUE, eval=TRUE, fig=TRUE>>=
plot(tc.tree1$Hx, tc.tree1$DHx, type="l", xlab="Height (m)",
ylab="Diameter (cm)")
## Calculate "exact" CIs. Careful: This takes a while!
#library(pracma)# for numerical integration with gaussLegendre()
tc.tree1.exact <- E_DHx_HmDm_HT_CIdHt.f(Hx=1:tree1$Ht[1],
Hm=tree1$Hx[3], Dm=tree1$Dx[3], mHt = tree1$Ht[1], sHt = 1, par.lme =
SK.par.lme) 
#add exact confidence intervals to approximate intervals above - fits
#quite well
lines(tc.tree1.exact[,1], tc.tree1.exact[,2], lty=2,col=2)
lines(tc.tree1.exact[,1], tc.tree1.exact[,4], lty=2,col=2)


## Calculate the height given a certain diameter threshold, say 8.5 cm
ht.tree1.d8.5 <- E_HDx_HmDm_HT.f (Dx=8.5, Hm=tree1$Hx[3],
Dm=tree1$Dx[3], mHt = tree1$Ht[1], sHt = 1, par.lme = SK.par.lme) 
#add to above created plot
abline(v=ht.tree1.d8.5)

## Calculate the timber volume
#for the whole stem
E_VOL_AB_HmDm_HT.f(Hm=tree1$Hx[3], Dm=tree1$Dx[3], mHt = tree1$Ht[1]
, sHt = 1, par.lme = SK.par.lme)

#Calculate the timber volume for a selected section given a height
#threshold (0.3 - 5 m)
E_VOL_AB_HmDm_HT.f(Hm=tree1$Hx[3], Dm=tree1$Dx[3], mHt = tree1$Ht[1]
, sHt = 1, par.lme = SK.par.lme, A=0.3, B=5, iDH = "H")

#Calculate the timber volume for a selected section given a diameter
#threshold (30 cm - 15 cm) (negative value if A<B)
E_VOL_AB_HmDm_HT.f(Hm=tree1$Hx[3], Dm=tree1$Dx[3], mHt = tree1$Ht[1]
, sHt = 1, par.lme = SK.par.lme, A=30, B=15, iDH = "D")

#The variance estimate resulting from the tree height uncertainty using
#a Normal approximation takes much longer...
ptm <- proc.time()
E_VOL_AB_HmDm_HT.f(Hm=tree1$Hx[3], Dm=tree1$Dx[3], mHt = tree1$Ht[1]
, sHt = 1, par.lme = SK.par.lme, IA=FALSE)
proc.time() - ptm


#... than the calculation using a 2-point distribution...
ptm <- proc.time()
E_VOL_AB_HmDm_HT.f(Hm=tree1$Hx[3], Dm=tree1$Dx[3], mHt = tree1$Ht[1]
, sHt = 1, par.lme = SK.par.lme, IA=TRUE)
proc.time() - ptm

#...fastest if no height variance is assumed
ptm <- proc.time()
E_VOL_AB_HmDm_HT.f(Hm=tree1$Hx[3], Dm=tree1$Dx[3], mHt = tree1$Ht[1]
, sHt = 0, par.lme = SK.par.lme, IA=FALSE)
proc.time() - ptm

#Also the number of supportive points for the numerical integration
#influences the calculation time
ptm <- proc.time()
E_VOL_AB_HmDm_HT.f(Hm=tree1$Hx[3], Dm=tree1$Dx[3], mHt = tree1$Ht[1]
, sHt = 0, par.lme = SK.par.lme, IA=FALSE, nGL=10)
proc.time() - ptm

@



\begin{thebibliography}{---}
\bibitem[Kublin et al.(2013)]{kublin2013} Kublin, E., Breidenbach, J.,
  K{\"a}ndler, G. (2013): \emph{A flexible stem taper
  and volume prediction method based on mixed-effects B-spline
  regression}. Eur J For Res, 132:983-997.
%
\end{thebibliography}


\end{document}