## ----global_options, include=FALSE-------------------------------------------- knitr::opts_chunk$set(echo = T, cache = T, results = "hold") library(Temporal) ## ----------------------------------------------------------------------------- # Generate exponential event time data. data <- GenData(n = 1e3, dist = "exp", theta = c(2), p = 0.2) # Estimate parameters. fit <- FitParaSurv(data, dist = "exp") show(fit) ## ----------------------------------------------------------------------------- # Generate gamma event time data. data <- GenData(n = 1e3, dist = "gamma", theta = c(2, 2), p = 0.25) # Estimate parameters. fit <- FitParaSurv(data, dist = "gamma", tau = 0.5) show(fit) ## ----------------------------------------------------------------------------- set.seed(102) # Generate generalized gamma event time data. data <- GenData(n = 1e4, dist = "gen-gamma", theta = c(2, 2, 2), p = 0.1) # Estimate parameters. fit <- FitParaSurv(data, dist = "gen-gamma", report = TRUE) show(fit) ## ----results='markup', eval=FALSE--------------------------------------------- # # Initialization. # fit <- FitParaSurv( # data, # dist = "gen-gamma", # init = list(alpha = 2, beta = 2, lambda = 2) # ) # show(fit) ## ----------------------------------------------------------------------------- # Generate log-normal event time data. data <- GenData(n = 1e3, dist = "log-normal", theta = c(1, 2), p = 0.15) # Estimate parameters. fit <- FitParaSurv(data, dist = "log-normal", tau = c(5, 10, 25)) show(fit) ## ----------------------------------------------------------------------------- # Generate Weibull event time data. data <- GenData(n = 1e3, dist = "weibull", theta = c(2, 2), p = 0.3) # Estimate parameters. fit <- FitParaSurv(data, dist = "weibull") show(fit) ## ----------------------------------------------------------------------------- set.seed(101) # Target group. df1 <- GenData(n = 1e3, dist = "gamma", theta = c(2, 1), p = 0.25) df1$arm <- 1 # Reference group. df0 <- GenData(n = 1e3, dist = "gamma", theta = c(2, 2), p = 0.15) df0$arm <- 0 # Overall data set. data <- rbind(df1, df0) # Compare fitted distributions. comp <- CompParaSurv(data, dist1 = "gamma", dist0 = "gamma") cat("\n") show(comp) ## ----------------------------------------------------------------------------- # Target group. df1 <- GenData(n = 1e3, dist = "weibull", theta = c(2, 2), p = 0.5) df1$arm <- 1 # Reference group. d0 <- GenData(n = 1e3, dist = "weibull", theta = c(2, 2), p = 0.0) d0$arm <- 0 # Overall data set. data <- rbind(df1, df0) # Compare fitted distributions. comp <- CompParaSurv(data, dist1 = "weibull", dist0 = "weibull") cat("\n") show(comp) ## ----------------------------------------------------------------------------- set.seed(105) # Target group. df1 <- GenData(n = 1e3, dist = "log-normal", theta = c(0, sqrt(2 * log(2))), p = 0.1) df1$arm <- 1 # Reference group. d0 <- GenData(n = 1e3, dist = "weibull", theta = c(2, sqrt(log(2))), p = 0.1) d0$arm <- 0 # Overall data set. data <- rbind(df1, df0) # Compare fitted distributions. comp <- CompParaSurv(data, dist1 = "log-normal", dist0 = "weibull") cat("\n") show(comp) ## ----------------------------------------------------------------------------- set.seed(106) # Target group. df1 <- GenData(n = 1e3, dist = "gamma", theta = c(4, 4), p = 0.2) df1$arm <- 1 # Reference group. df0 <- GenData(n = 1e3, dist = "exp", theta = c(1), p = 0.2) df0$arm <- 0 # Overall data set. data <- rbind(df1, df0) # Compare fitted distributions. comp <- CompParaSurv(data, dist1 = "gamma", dist0 = "exp", tau = c(0.5, 1.0, 1.5)) cat("\n") show(comp)