## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(cli) library(UAHDataScienceSC) ## ----install-package, eval = FALSE-------------------------------------------- # install.packages("UAHDataScienceSC") ## ----load-package------------------------------------------------------------- library(UAHDataScienceSC) ## ----load-flower-db----------------------------------------------------------- data("db_flowers") head(db_flowers) ## ----load-and-db-------------------------------------------------------------- data("db_per_and.rda") head(db_per_and) ## ----load-or-db--------------------------------------------------------------- data("db_per_or.rda") head(db_per_or) ## ----load-xor-db-------------------------------------------------------------- data("db_per_xor.rda") head(db_per_xor) ## ----load-db2----------------------------------------------------------------- data(db2) head(db2) ## ----load-db3----------------------------------------------------------------- data(db3) head(db3) ## ----load-db1rl--------------------------------------------------------------- data("db1rl") head(db1rl) ## ----knn-basic-usage---------------------------------------------------------- result <- knn( data = db_flowers, ClassLabel = "ClassLabel", p1 = c(4.7, 1.2, 5.3, 2.1), d_method = "euclidean", k = 3 ) print(result) ## ----knn-interactive-usage---------------------------------------------------- result <- knn( data = db_flowers, ClassLabel = "ClassLabel", p1 = c(4.7, 1.2, 5.3, 2.1), d_method = "euclidean", k = 3, learn = TRUE, waiting = FALSE ) ## ----decision-tree-usage------------------------------------------------------ tree <- decision_tree( data = db2, classy = "VehicleType", m = 4, method = "gini", learn = TRUE ) print(tree) ## ----perceptron-usage--------------------------------------------------------- weights <- perceptron( training_data = db_per_and, to_clasify = c(0, 0, 1), activation_method = "swish", max_iter = 1000, learning_rate = 0.1, learn = TRUE ) ## ----regression-usage--------------------------------------------------------- # Linear regression linear_model <- multivariate_linear_regression( data = db1rl, learn = TRUE ) # Polynomial regression poly_model <- polynomial_regression( data = db1rl, degree = 4, learn = TRUE )