## ---- echo = FALSE, message = FALSE------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=F------------------------------------------------------------------- # obj<-LRfit(id,time,status,trt) ## ----eval=F------------------------------------------------------------------- # obj<-LRfit(id,time,status,trt,Dweight=0) ## ----eval=F------------------------------------------------------------------- # # define w_m(t) # wH<-function(t,m) return (1) # # define w_m^D(t) # wD<-function(t,m) return (0) # obj<-LRfit(id,time,status,trt,wH=wH,wD=wD) ## ----eval=F------------------------------------------------------------------- # summary(obj,tau) ## ----eval=F------------------------------------------------------------------- # plot(obj,conf=TRUE) ## ----setup-------------------------------------------------------------------- library(WA) head(hfaction_cpx12) ## ----------------------------------------------------------------------------- dat<-hfaction_cpx12 obj<-LRfit(dat$id,dat$time,dat$status,dat$trt) ## print some descriptive information obj ## ----fig.align='center',fig.width=7.2,fig.height=4.5-------------------------- plot(obj,conf=T,xlab="Time (years)",xlim=c(0, 3.5),ylim=c(0,3)) ## ----------------------------------------------------------------------------- ## summarize the inference results at tau=3.5 years summary(obj,tau=3.5,joint.test=T) ## ----------------------------------------------------------------------------- ## fit the data using the weighted composite loss obj2<-LRfit(dat$id,dat$time,dat$status,dat$trt,Dweight=2) ## summarize the results at tau=3.5 years summary(obj2,tau=3.5)