## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE) ## ----Load libraries, echo=TRUE------------------------------------------------ library(WormTensor) ## ----worm_download, echo=TRUE------------------------------------------------- object <- worm_download() ## ----as_worm_tensor, echo=TRUE------------------------------------------------ object <- as_worm_tensor(object$Ds) ## ----worm_membership, echo=TRUE----------------------------------------------- object <- worm_membership(object, k=6) ## ----worm_clustering, echo=TRUE----------------------------------------------- object <- worm_clustering(object) ## ----worm_evaluate, echo=TRUE------------------------------------------------- object <- worm_evaluate(object) ## ----worm_visualize, echo=TRUE------------------------------------------------ object <- worm_visualize(object) ## ----pipe_operation, echo=TRUE------------------------------------------------ worm_download()$Ds |> as_worm_tensor() |> worm_membership(k=6) |> worm_clustering() |> worm_evaluate() |> worm_visualize() -> object ## ----pipe_operation with Labels, echo=TRUE------------------------------------ # Sample Labels worm_download()$Ds |> as_worm_tensor() |> worm_membership(k=6) |> worm_clustering() -> object labels <- list( label1 = sample(3, length(object@clustering), replace=TRUE), label2 = sample(4, length(object@clustering), replace=TRUE), label3 = sample(5, length(object@clustering), replace=TRUE)) # WormTensor (with Labels) worm_download()$Ds |> as_worm_tensor() |> worm_membership(k=6) |> worm_clustering() |> worm_evaluate(labels) |> worm_visualize() -> object_labels ## ----worm_distance, echo=TRUE------------------------------------------------- # Toy data (data of 3 animals) n_cell_x <- 13 n_cell_y <- 24 n_cell_z <- 29 n_cells <- 30 n_time_frames <- 100 # animal_x : 13 cells, 100 time frames animal_x <- matrix(runif(n_cell_x*n_time_frames), nrow=n_cell_x, ncol=n_time_frames) rownames(animal_x) <- sample(seq(n_cells), n_cell_x) colnames(animal_x) <- seq(n_time_frames) # animal_y : 24 cells, 100 time frames animal_y <- matrix(runif(n_cell_y*n_time_frames), nrow=n_cell_y, ncol=n_time_frames) rownames(animal_y) <- sample(seq(n_cells), n_cell_y) colnames(animal_y) <- seq(n_time_frames) # animal_z : 29 cells, 100 time frames animal_z <- matrix(runif(n_cell_z*n_time_frames), nrow=n_cell_z, ncol=n_time_frames) rownames(animal_z) <- sample(seq(n_cells), n_cell_z) colnames(animal_z) <- seq(n_time_frames) # Input list for worm_distnce X <- list(animal_x=animal_x, animal_y=animal_y, animal_z=animal_z) # Pipe Operation # tsne.perplexity must be adjusted for data size worm_distance(X, "mSBD") |> as_worm_tensor() |> worm_membership(k=6) |> worm_clustering() |> worm_evaluate() |> worm_visualize(tsne.perplexity=5) -> object ## ----sessionInfo, echo=FALSE-------------------------------------------------- sessionInfo()