## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.dim=c(8, 4), out.width="100%" ) library(adas.utils) library(tidyverse) ## ----------------------------------------------------------------------------- (dm <- fp_design_matrix(2, rep=2) %>% mutate(Y=rnorm(n()))) ## ----------------------------------------------------------------------------- fp_design_matrix(~Speed*Weight) ## ----------------------------------------------------------------------------- fp_design_matrix(2) %>% fp_add_names(A="Temperature", B="Pressure") %>% fp_add_scale(A=c(20, 25), B=c(75, 125), suffix=".scaled") ## ----------------------------------------------------------------------------- fp_design_matrix(2, levels=-1:1) ## ----------------------------------------------------------------------------- fp_design_matrix(3) %>% fp_augment_center(rep=4) ## ----------------------------------------------------------------------------- fp_design_matrix(3) %>% fp_augment_center(rep=3) %>% fp_augment_axial(rep=2) ## ----------------------------------------------------------------------------- fp <- fp_design_matrix(2, rep=3) ## ----------------------------------------------------------------------------- fp$Y <- ccd_experiment_yield$base ## ----------------------------------------------------------------------------- fp %>% lm(Y ~ A*B, data=.) %>% anova() ## ----------------------------------------------------------------------------- fpc <- fp %>% fp_augment_center(rep=4) fpc$Y[fpc$.treat == "center"] <- ccd_experiment_yield$center ## ----------------------------------------------------------------------------- fpc %>% lm(Y ~ A*B+I(A^2), data=.) %>% anova() ## ----------------------------------------------------------------------------- fpccd <- fpc %>% fp_augment_axial(rep=2) fpccd$Y[fpccd$.treat == "axial"] <- ccd_experiment_yield$axial fpccd %>% lm(Y ~ A*B*I(A^2)*I(B^2), data=.) %>% anova() ## ----------------------------------------------------------------------------- fpccd %>% lm(Y ~ A*B+I(A^2), data=.) %>% summary() ## ----eval=FALSE--------------------------------------------------------------- # dm <- fp_design_matrix(2) %>% # fp_add_names(A="Temperature", B="Pressure") %>% # fp_add_scale(A=c(2, 12), B=c(40, 60), suffix="_s") %>% # fp_write_csv("design_matrix.csv") ## ----eval=FALSE--------------------------------------------------------------- # dm <- dm %>% # fp_read_csv("design_matrix.csv") ## ----------------------------------------------------------------------------- fp_design_matrix(5) %>% fp_fraction(~A*B*C*D) %>% fp_fraction(~B*C*D*E) ## ----------------------------------------------------------------------------- fp_design_matrix(3) %>% fp_fraction(~A*B*C, remove=FALSE) ## ----------------------------------------------------------------------------- (am <- fp_alias_matrix(~A*B*C, ~B*C*D)) ## ----------------------------------------------------------------------------- am %>% plot() ## ----------------------------------------------------------------------------- am %>% as_tibble() ## ----warning=FALSE------------------------------------------------------------ df <- tibble( xn = rnorm(100, mean=20, sd=5), xu = runif(100, min=0, max=40) ) df %>% normplot(xn) df %>% normplot(xu) ## ----------------------------------------------------------------------------- set.seed(1) tibble( val=rnorm(10, sd=5), cat=LETTERS[1:length(val)] ) %>% pareto_chart(labels=cat, values=val) ## ----------------------------------------------------------------------------- filtration %>% lm(Y~A*B*C*D, data=.) %>% pareto_chart() ## ----------------------------------------------------------------------------- daniel_plot_qq(lm(Y~A*B*C*D, data=filtration)) ## ----------------------------------------------------------------------------- filtration %>% lm(Y~A*B*C*D, data=.) %>% daniel_plot_hn(nlab=6, repel=TRUE) ## ----------------------------------------------------------------------------- filtration %>% lm(Y~A*C*D, data=.) %>% anova() ## ----------------------------------------------------------------------------- data <- examples_url("battery.dat") %>% read_table() %>% mutate(across(c(Temperature, Material), factor)) %>% mutate(Material = LETTERS[Material]) data.t <- data %>% filter(Material == "A") %>% aov(Response~Temperature, data=.) %>% TukeyHSD() data.t data.t %>% plot() ## ----------------------------------------------------------------------------- data.t %>% ggTukey() ## ----------------------------------------------------------------------------- data %>% filter(Material == "A") %>% ggTukey(Response~Temperature) ## ----------------------------------------------------------------------------- data %>% ggTukey(Response~Temperature, splt=~Material) ## ----------------------------------------------------------------------------- examples_url("battery.dat") %>% read.table(header=TRUE)