## ----skipNoSNPSTATS----------------------------------------------------------- # IMPORTANT: this vignette is not created if snpStats is not installed if (!require("snpStats")) { knitr::opts_chunk$set(eval = FALSE) } ## ----loadLib, message=FALSE--------------------------------------------------- library("adjclust") ## ----loadData, results="hide", message=FALSE---------------------------------- data("ld.example", package = "snpStats") ## ----preData------------------------------------------------------------------ geno <- ceph.1mb[, -316] ## drop one SNP leading to one missing LD value p <- ncol(geno) nSamples <- nrow(geno) geno ## ----LD----------------------------------------------------------------------- ld.ceph <- snpStats::ld(geno, stats = "R.squared", depth = p-1) image(ld.ceph, lwd = 0) ## ----snpClust----------------------------------------------------------------- fit <- snpClust(geno, stats = "R.squared") ## ----snpClust-sparse---------------------------------------------------------- fitH <- snpClust(geno, h = 100, stats = "R.squared") fitH ## ----dendro------------------------------------------------------------------- plot(fitH, type = "rectangle", leaflab = "perpendicular") ## ----objectDesc--------------------------------------------------------------- head(cbind(fitH$merge, fitH$gains)) ## ----snpClust-LD-------------------------------------------------------------- h <- 100 ld.ceph <- snpStats::ld(geno, stats = "R.squared", depth = h, symmetric = TRUE) image(ld.ceph, lwd = 0) ## ----snpClust-sMatrix--------------------------------------------------------- fitL <- snpClust(ld.ceph, h) ## ----snpClust-matrix, warning=FALSE------------------------------------------- gmat <- as(geno, "matrix") fitM <- snpClust(geno, h, stats = "R.squared") ## ----session------------------------------------------------------------------ sessionInfo()