## ----knitr, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----load libraries----------------------------------------------------------- library(ale) ## ----attitude_str------------------------------------------------------------- str(attitude) ## ----attitude_summary--------------------------------------------------------- summary(attitude) ## ----lm_summary--------------------------------------------------------------- lm_attitude <- lm(rating ~ ., data = attitude) summary(lm_attitude) ## ----lm_simple, fig.width=7, fig.height=6------------------------------------- ale_lm_attitude_simple <- ALE(lm_attitude) # Print all plots plot(ale_lm_attitude_simple) |> print(ncol = 2) ## ----lm_full_call------------------------------------------------------------- mb_lm <- ModelBoot( lm_attitude, boot_it = 10 # 100 by default but reduced here for a faster demonstration ) ## ----lm_full_stats------------------------------------------------------------ mb_lm@model_stats ## ----lm_full_coefs------------------------------------------------------------ mb_lm@model_coefs ## ----lm_full_ale, fig.width=7, fig.height=6----------------------------------- plot(mb_lm) |> print(ncol = 2) ## ----gam_summary-------------------------------------------------------------- gam_attitude <- mgcv::gam( rating ~ complaints + privileges + s(learning) + raises + s(critical) + advance, data = attitude) summary(gam_attitude) ## ----gam_simple, fig.width=7, fig.height=6------------------------------------ ale_gam_attitude_simple <- ALE(gam_attitude) plot(ale_gam_attitude_simple) |> print(ncol = 2) ## ----gam_full_stats----------------------------------------------------------- mb_gam <- ModelBoot( gam_attitude, boot_it = 10, # 100 by default but reduced here for a faster demonstration pred_type = 'response' ) mb_gam@model_stats ## ----gam_full_coefs----------------------------------------------------------- mb_gam@model_coefs ## ----gam_full_ale, fig.width=7, fig.height=6---------------------------------- plot(mb_gam) |> print(ncol = 2) ## ----gam_summary_repeat------------------------------------------------------- gam_attitude_again <- mgcv::gam( rating ~ complaints + privileges + s(learning) + raises + s(critical) + advance, data = attitude) summary(gam_attitude_again) ## ----model_call_string-------------------------------------------------------- mb_gam_non_standard <- ModelBoot( gam_attitude_again, model_call_string = 'mgcv::gam( rating ~ complaints + privileges + s(learning) + raises + s(critical) + advance, data = boot_data)', boot_it = 10 # 100 by default but reduced here for a faster demonstration ) mb_gam_non_standard@model_stats