## ----set-knitr-options, cache=FALSE, echo=FALSE, warning=FALSE, message=FALSE---- library("knitr") opts_chunk$set(message = FALSE, fig.width = 5.5) ## ----message=FALSE, warning=FALSE--------------------------------------------- library(bayesdfa) library(ggplot2) library(dplyr) library(rstan) chains = 1 iter = 10 ## ----------------------------------------------------------------------------- set.seed(1) s = sim_dfa(num_trends = 1, num_years = 1000, num_ts = 4, loadings_matrix = matrix(nrow = 4, ncol = 1, rnorm(4 * 1, 1, 0.1)), sigma=0.05) ## ----------------------------------------------------------------------------- matplot(t(s$y_sim), type="l") ## ----eval = FALSE------------------------------------------------------------- # fit <- fit_dfa(..., estimation = "sampling") ## ----------------------------------------------------------------------------- set.seed(123) m <- fit_dfa(y = s$y_sim, estimation = "optimizing") ## ----------------------------------------------------------------------------- names(m$model) ## ----------------------------------------------------------------------------- m$model$return_code ## ----------------------------------------------------------------------------- set.seed(124) m <- fit_dfa(y = s$y_sim, estimation = "optimizing") ## ----------------------------------------------------------------------------- m$model$return_code ## ----message=FALSE, warning=FALSE, eval=FALSE--------------------------------- # m <- fit_dfa(y = s$y_sim, estimation = "vb", seed=123) ## ----message=FALSE, warning=FALSE, eval=FALSE--------------------------------- # m <- fit_dfa(y = s$y_sim, estimation = "vb", seed=123, iter=20000, # tol_rel_obj = 0.005, output_samples = 2000)