## ----eval = FALSE------------------------------------------------------------- # csem(.data = my_data, .model = my_model) ## ----------------------------------------------------------------------------- model <- " # Structural model EXPE ~ IMAG # Reflective measurement model EXPE =~ expe1 + expe2 IMAG =~ imag1 + imag2 " ## ----eval=FALSE--------------------------------------------------------------- # model <- " # # Structural model # EXPE ~ IMAG # QUAL ~ EXPE # VAL ~ EXPE + QUAL # SAT ~ IMAG + EXPE + QUAL + VAL # LOY ~ IMAG + SAT # # # Composite model # IMAG <~ imag1 + imag2 + imag3 # composite # EXPE <~ expe1 + expe2 + expe3 # composite # QUAL <~ qual1 + qual2 + qual3 + qual4 + qual5 # composite # VAL <~ val1 + val2 + val3 # composite # # # Reflective measurement model # SAT =~ sat1 + sat2 + sat3 + sat4 # common factor # LOY =~ loy1 + loy2 + loy3 + loy4 # common factor # # # Measurement error correlation # sat1 ~~ sat2 # " ## ----------------------------------------------------------------------------- model <- " # Structural model EXPE ~ IMAG + IMAG.IMAG # Composite model EXPE <~ expe1 + expe2 IMAG <~ imag1 + imag2 " ## ----eval=FALSE--------------------------------------------------------------- # model <- " # # Structural model # SAT ~ QUAL # VAL ~ SAT + QUAL # # # Reflective measurement model # SAT =~ sat1 + sat2 # VAL =~ val1 + val2 # # # Composite model # IMAG <~ imag1 + imag2 # EXPE <~ expe1 + expe2 # # # Second-order term # QUAL =~ IMAG + EXPE # " ## ----warning=FALSE, message=FALSE--------------------------------------------- require(cSEM) model <- " # Path model / Regressions eta2 ~ eta1 eta3 ~ eta1 + eta2 # Reflective measurement model eta1 =~ y11 + y12 + y13 eta2 =~ y21 + y22 + y23 eta3 =~ y31 + y32 + y33 " a <- csem(.data = threecommonfactors, .model = model) a ## ----eval=FALSE--------------------------------------------------------------- # csem( # .data = threecommonfactors, # .model = model, # .approach_cor_robust = "none", # .approach_nl = "sequential", # .approach_paths = "OLS", # .approach_weights = "PLS-PM", # .conv_criterion = "diff_absolute", # .disattenuate = TRUE, # .dominant_indicators = NULL, # .estimate_structural = TRUE, # .id = NULL, # .iter_max = 100, # .normality = FALSE, # .PLS_approach_cf = "dist_squared_euclid", # .PLS_ignore_structural_model = FALSE, # .PLS_modes = NULL, # .PLS_weight_scheme_inner = "path", # .reliabilities = NULL, # .starting_values = NULL, # .tolerance = 1e-05, # .resample_method = "none", # .resample_method2 = "none", # .R = 499, # .R2 = 199, # .handle_inadmissibles = "drop", # .user_funs = NULL, # .eval_plan = "sequential", # .seed = NULL, # .sign_change_option = "no" # ) ## ----echo=FALSE, include=FALSE------------------------------------------------ x <- runif(1) # to intialize .Random.seed ## ----------------------------------------------------------------------------- b1 <- csem(.data = threecommonfactors, .model = model, .resample_method = "bootstrap") b2 <- resamplecSEMResults(a) ## ----------------------------------------------------------------------------- summarize(b1) ## ----------------------------------------------------------------------------- ii <- infer(b1, .quantity = c("CI_standard_z", "CI_percentile"), .alpha = c(0.01, 0.05)) ii$Path_estimates ## ----eval=FALSE--------------------------------------------------------------- # b <- csem( # .data = satisfaction, # .model = model, # .resample_method = "bootstrap", # .R = 999, # .seed = 98234, # .eval_plan = "multiprocess") # # # Output omitted ## ----eval=FALSE--------------------------------------------------------------- # model <- " # ## Structural model # eta2 ~ eta1 # # ## Measurement model # eta1 <~ y11 + y12 + y13 # eta2 =~ y21 + y22 + y23 # " # # # Identical # csem(threecommonfactors, model) # csem(threecommonfactors, model, .disattenuate = TRUE) # # # To supress automatic disattenuation # csem(threecommonfactors, model, .disattenuate = FALSE) ## ----eval=FALSE--------------------------------------------------------------- # model <- " # ## Structural model # eta2 ~ eta1 # # ## Composite model # eta1 <~ y11 + y12 + y13 # eta2 <~ y21 + y22 + y23 # " # # ### Currently the following weight approaches are implemented # # Partial least squares path modeling (PLS) # csem(threecommonfactors, model, .approach_weights = "PLS-PM") # default # # # Generalized canonical correlation analysis (Kettenring approaches) # csem(threecommonfactors, model, .approach_weights = "SUMCORR") # csem(threecommonfactors, model, .approach_weights = "MAXVAR") # csem(threecommonfactors, model, .approach_weights = "SSQCORR") # csem(threecommonfactors, model, .approach_weights = "MINVAR") # csem(threecommonfactors, model, .approach_weights = "GENVAR") # # # Generalized structured component analysis (GSCA) # csem(threecommonfactors, model, .approach_weights = "GSCA") # # # Principal component analysis (PCA) # csem(threecommonfactors, model, .approach_weights = "PCA") # # # Factor score regression (FSR) using "unit", "bartlett" or "regression" weights # csem(threecommonfactors, model, .approach_weights = "unit") # csem(threecommonfactors, model, .approach_weights = "bartlett") # csem(threecommonfactors, model, .approach_weights = "regression")