## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- message=FALSE, warning=FALSE-------------------------------------------- library(survey) library(calidad) library(dplyr) ene <- ene %>% mutate(fdt = if_else(cae_especifico >= 1 & cae_especifico <= 9, 1, 0), # labour force ocupado = if_else(cae_especifico >= 1 & cae_especifico <= 7, 1, 0), # employed desocupado = if_else(cae_especifico >= 8 & cae_especifico <= 9, 1, 0), hombre = if_else(sexo == 1, 1, 0), mujer = if_else(sexo == 2, 1, 0)) # unemployed # One row per household epf <- epf_personas %>% group_by(folio) %>% slice(1) %>% ungroup() ## ---- results='hide'---------------------------------------------------------- # Store original options old_options <- options() ## ----------------------------------------------------------------------------- # Complex sample design for ENE dc_ene <- svydesign(ids = ~conglomerado , strata = ~estrato_unico, data = ene, weights = ~fact_cal) # Complex sample design for EPF dc_epf <- svydesign(ids = ~varunit, strata = ~varstrat, data = epf, weights = ~fe) options(survey.lonely.psu = "certainty") ## ---- eval=FALSE-------------------------------------------------------------- # # Complex sample design for ELE # dc_ele <- svydesign(ids = ~rol_ficticio, weights = ~fe_transversal, strata = ~estrato, fpc = ~pob, data = ELE7) # # options(survey.lonely.psu = 'remove') # ## ----------------------------------------------------------------------------- insumos_prop <- create_prop(var = "desocupado", domains = "sexo", subpop = "fdt", design = dc_ene) # proportion of unemployed people insumos_total <- create_size(var = "desocupado", domains = "sexo", subpop = "fdt", design = dc_ene) # number of unemployed people ## ----------------------------------------------------------------------------- insumos_total ## ----------------------------------------------------------------------------- desagregar <- create_prop(var = "desocupado", domains = "sexo+region", subpop = "fdt", design = dc_ene) ## ---- eval=F------------------------------------------------------------------ # # eclac_inputs <- create_prop(var = "desocupado", domains = "sexo+region", subpop = "fdt", design = dc_ene, eclac_input = TRUE) # ## ---- eval=FALSE, warning=FALSE----------------------------------------------- # # create_prop(var = "mujer", denominator = "hombre", domains = "ocupado", design = dc_ene, # eclac_input = TRUE, scheme = 'eclac_2023') # ## ---- eval=T, warning=FALSE--------------------------------------------------- insumos_suma <- create_total(var = "gastot_hd", domains = "zona", design = dc_epf) ## ----------------------------------------------------------------------------- insumos_media <- create_mean(var = "gastot_hd", domains = "zona", design = dc_epf) ## ----------------------------------------------------------------------------- # ENE dataset insumos_prop_nacional <- create_prop("desocupado", subpop = "fdt", design = dc_ene) insumos_total_nacional <- create_total("desocupado", subpop = "fdt", design = dc_ene) # EPF dataset insumos_suma_nacional <- create_total("gastot_hd", design = dc_epf) insumos_media_nacional <- create_mean("gastot_hd", design = dc_epf) ## ----------------------------------------------------------------------------- # ENE dataset prop_nacional_ci <- create_prop("desocupado", subpop = "fdt", design = dc_ene, ci = TRUE) prop_nacional_ci_logit <- create_prop("desocupado", subpop = "fdt", design = dc_ene, ci_logit = TRUE) ## ---- eval=FALSE-------------------------------------------------------------- # # prod_salarial <- create_prop('VA_2022f', denominator = 'REMP_TOTAL', domains = 'cod_actividad+cod_tamano', design = dc_ele) ## ---- eval=F, warning=FALSE--------------------------------------------------- # # # INE Chile # evaluacion_prop <- assess(insumos_prop) # evaluacion_tot <- assess(insumos_total) # evaluacion_suma <- assess(insumos_suma) # evaluacion_media <- assess(insumos_media) # # # ECLAC # evaluacion_cepal_2020 <- assess(eclac_inputs, scheme = 'eclac_2020') # evaluacion_cepal_2023 <- assess(eclac_inputs, scheme = 'eclac_2023', domain_info = TRUE, low_df_justified = TRUE) # # ## ---- eval = FALSE------------------------------------------------------------ # # INE Economics # # ## target sample size # table_n_obj <- ELE7_n_obj %>% # dplyr::mutate(cod_actividad = cod_actividad_letra, # cod_tamano = as.character(cod_tamano)) %>% # dplyr::select(-cod_actividad_letra) # # # eval_ratio <- assess(prod_salarial, scheme = 'chile_economics', # domain_info = TRUE, table_n_obj = table_n_obj, ratio_between_0_1 = FALSE) # ## ----eval=F------------------------------------------------------------------- # # Unemployment by region # desagregar <- create_size(var = "desocupado", domains = "region", subpop = "fdt", design = dc_ene) # # # assess output # evaluacion_tot_desagreg <- assess(desagregar, publish = T) # evaluacion_tot_desagreg ## ----eval=F------------------------------------------------------------------- # # Reset original options # options(old_options)