Processing math: 100%

model_parameters

RW1972

model_parameters("RW1972")
## $name
## [1] "alphas"    "betas_on"  "betas_off" "lambdas"  
## 
## $default_value
## [1] 0.4 0.4 0.4 1.0
Name Symbol Description
alphas α Learning rate for presented stimulus
betas_on, betas_off βon,βoff Intensity of presented and absent target
lambdas λ Maximum learning supported by target

MAC1975

model_parameters("MAC1975")
## $name
## [1] "alphas"     "min_alphas" "max_alphas" "betas_on"   "betas_off" 
## [6] "lambdas"    "thetas"     "gammas"    
## 
## $default_value
## [1] 0.4 0.1 1.0 0.4 0.4 1.0 0.2 0.3
Name Symbol Description
alphas α Starting associability (learning rate) for presented stimulus
min_alphas, max_alphas αmin,αmax Minimum and maximum associability for stimulus
betas_on, betas_off βon,βoff Intensity of presented and absent target
lambdas λ Maximum learning supported by target
thetas θ Attentional learning rate parameter for stimulus
gammas γ Attentional learning weight for stimulus

PKH1982

model_parameters("PKH1982")
## $name
## [1] "alphas"     "min_alphas" "max_alphas" "betas_ex"   "betas_in"  
## [6] "lambdas"    "thetas"     "gammas"    
## 
## $default_value
## [1] 0.4 0.1 1.0 0.4 0.3 1.0 1.0 0.3
Name Symbol Description
alphas α Learning rate for presented stimulus
min_alphas, max_alphas αmin,αmax Minimum and maximum associability for stimulus
betas_in, betas_ex βin,βex Learning rates for inhibitory and excitatory associations
lambdas λ Maximum learning supported by target
thetas θ Decay/strengthening associability rate parameter for stimulus
gammas γ Attentional learning weight for stimulus

SM2007

model_parameters("SM2007")
## $name
## [1] "alphas"  "lambdas" "omegas"  "rhos"    "gammas"  "taus"    "order"  
## 
## $default_value
## [1] 0.4 1.0 0.2 1.0 1.0 0.2 1.0
Name Symbol Description
alphas α Learning rate for presented stimulus
lambdas λ Maximum learning supported by target
omegas ω Weakening rate for presented stimulus
rhos ρ Salience contribution for unconditioned activation of target
gammas γ Contribution of stimulus to comparison process
taus τ Learning rate for operator switch
order order Order for the comparison process

HDI2020/HD2022

model_parameters("HDI2020")
## $name
## [1] "alphas"
## 
## $default_value
## [1] 0.4
model_parameters("HD2022")
## $name
## [1] "alphas"
## 
## $default_value
## [1] 0.4
Name Symbol Description
alphas α Learning rate for presented stimulus

TD

model_parameters("TD")
## $name
## [1] "alphas"    "betas_on"  "betas_off" "lambdas"   "gamma"     "sigma"    
## 
## $default_value
## [1] 0.05 0.40 0.40 1.00 0.95 0.90
Name Symbol Description
alphas α Learning rate for presented stimulus
betas_on, betas_off βon,βoff Intensity of presented and absent target
lambdas λ Maximum learning supported by target
gamma γ Temporal discount parameter
sigma σ Rate of decay for eligibility traces

ANCCR

model_parameters("ANCCR")
## $name
##  [1] "reward_magnitude"  "betas"             "cost"             
##  [4] "temperature"       "threshold"         "k"                
##  [7] "w"                 "minimum_rate"      "sampling_interval"
## [10] "use_exact_mean"    "t_ratio"           "t_constant"       
## [13] "alpha"             "alpha_reward"      "use_timed_alpha"  
## [16] "alpha_exponent"    "alpha_init"        "alpha_min"        
## [19] "add_beta"          "jitter"           
## 
## $default_value
##  [1] 1.000 1.000 0.000 1.000 0.600 1.000 0.500 0.001 0.200 0.000 1.200    NA
## [13] 0.020 0.200 0.000 1.000 1.000 0.000 0.000 1.000
Name Symbol Description
reward_magnitude CWj,j Reward magnitude for target
betas β Unconditional value for target
cost cost Response cost
temperature temperature Temperature for softmax function
threshold θ Threshold to become meaningful causal target/putative cause
k,alpha,alpha_reward k,α,αreward Learning rates for predecessor representation, predecessor representation contingency, and causal weights.
w w Weight for net contingency computation
minimum_rate minimum_rate Lower bound on perceivable event rates
sampling_interval sampling_interval Time interval to update base rate calculations
use_exact_mean use_exact_mean Whether to use exact mean calculations for α
t_ratio t_ratio Ratio to calculate time constant
use_timed_alpha use_timed_alpha Whether to use exponential decay for α
alpha_exponent, alpha_init, alpha_min alpha_exponent,alpha_init,alpha_min Parameters for exponential decay of α
add_beta add_beta Whether to add β to dopaminergic activity
jitter jitter Magnitude of perceptual noise for simultaneous events

RAND

model_parameters("RAND")
## $name
## [1] "alphas"
## 
## $default_value
## [1] 0.4
Name Symbol Description
alphas α Placeholder; no meaning.