## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", dev='png', fig.width=7, fig.height=5.5 # , # dev.args=list(antialias = "none") ) ## ----setup-------------------------------------------------------------------- library(carbondate) ## ----calculate_gr_multiple, results=FALSE, eval=FALSE------------------------- # all_outputs <- list() # for (i in 1:3) { # set.seed(i + 1) # all_outputs[[i]] <- PolyaUrnBivarDirichlet( # kerr$c14_age, kerr$c14_sig, intcal20, n_iter = 1e4) # } # PlotGelmanRubinDiagnosticMultiChain(all_outputs) ## ----out.width= "100%", echo = FALSE------------------------------------------ knitr::include_graphics("figures-convergence/calculate_gr_multiple-1.png") ## ----calculate_gr, results=FALSE, eval=FALSE---------------------------------- # set.seed(3) # output <- PolyaUrnBivarDirichlet( # kerr$c14_age, kerr$c14_sig, intcal20, n_iter = 2e4) # # PlotGelmanRubinDiagnosticSingleChain(output, n_burn = 5e3) ## ----out.width= "100%", echo = FALSE------------------------------------------ knitr::include_graphics("figures-convergence/calculate_gr-1.png") ## ----calculate_polya_kerr, results=FALSE, eval=FALSE-------------------------- # outputs <- list() # for (i in 1:3) { # set.seed(i+1) # outputs[[i]] <- PolyaUrnBivarDirichlet( # rc_determinations = kerr$c14_age, # rc_sigmas = kerr$c14_sig, # calibration_curve=intcal20, # n_iter = 1e4) # outputs[[i]]$label <- paste("Seed =", i) # } # PlotPredictiveCalendarAgeDensity( # outputs, n_posterior_samples = 500, denscale = 2, interval_width = "1sigma") ## ----out.width= "100%", echo = FALSE------------------------------------------ knitr::include_graphics("figures-convergence/calculate_polya_kerr-1.png") ## ----calculate_polya_normals, results=FALSE, eval=FALSE----------------------- # outputs <- list() # for (i in 1:3) { # set.seed(i + 1) # outputs[[i]] <- PolyaUrnBivarDirichlet( # rc_determinations = two_normals$c14_age, # rc_sigmas = two_normals$c14_sig, # calibration_curve=intcal20, # n_iter = 1e4) # outputs[[i]]$label <- paste("Seed =", i) # } # PlotPredictiveCalendarAgeDensity( # outputs, n_posterior_samples = 500, denscale = 2, interval_width = "1sigma") ## ----out.width= "100%", echo = FALSE------------------------------------------ knitr::include_graphics("figures-convergence/calculate_polya_normals-1.png") ## ----calculate_kld, results=FALSE, eval=FALSE--------------------------------- # set.seed(50) # output <- WalkerBivarDirichlet( # rc_determinations = kerr$c14_age, # rc_sigmas = kerr$c14_sig, # calibration_curve=intcal20, # n_iter = 1e5) # # PlotConvergenceData(output) ## ----out.width= "100%", echo = FALSE------------------------------------------ knitr::include_graphics("figures-convergence/calculate_kld-1.png")